Применение одноатомных спиртов. Химические свойства спиртов одноатомных и многоатомных

Предельные одноатомные спирты

Номенклатура. Для названия спиртов используют рациональную и систематическую номенклатуры.

По рациональной номенклатуре названия спиртов образуются от названия соответствующего радикала, связанного с гидроксильной группой и добавлением слова «спирт».

По систематической номенклатуре название дается от названия углеводорода с добавлением суффикса –ол.

Изомерия в спиртах обусловлена изменениями в структуре углеводородного скелета и положением ОН- группы.

Способы получения спиртов. Существуют различныеспособы получения спиртов. Здесь приводятся лишь некоторые из них.

1. Ферментивный гидролиз и брожение углеводов. По этому способу этиловый спирт получают из продуктов, содержащих глюкозу или другие сахара. При брожении глюкозы под действием ферментов дрожжей образуется этанол:

Брожение фруктовых соков, особенно виноградного, дает спиртовые растворы с содержанием этанола 10 – 15 %, которые называют винами.

Для получения этанола в больших количествах в качестве исходного вещества берется более дешевый углевод – крахмал. Образование спирта из крахмалсодержащих продуктов складывается из следующих стадий:

а) осахаривание крахмала:

Процесс образования мальтозы протекает под действием фермента амилазы, содержащегося в солоде - проросших и высушенных зернах ячменя.

б) брожение осахаренного раствора. Этот процесс протекает под действием ферментов, которые содержатся в дрожжах:

Обе стадии являются результатом совместного действия самых различных ферментов, содержащихся в дрожжах. Эти ферменты называют еще энзимы. Полученный в результате брожения раствор содержит 18 % этанола. Эту смесь подвергают перегонке и получают спирт-сырец с содержанием этанола 90 %. Дополнительная перегонка дает спирт-ректификат с содержанием этанола 95,5 %. Абсолютный спирт (100% этанола) можно получить путем азеотропной перегонки с бензолом.

В процессе брожения наряду с этанолом получаются сивушные масла, которые понижают качество спирта. Они представляют собой смесь изомерных спиртов с числом углеродных атомов С 3 - С 5 .

Сивушные масла получаются за счет разложения белковых компонентов входящих в состав исходного крахмалсодержащего сырья.

Этанол, полученный по этой технологии, после дополнительной очистки, используется для изготовления алкогольной продукции. Если в качестве исходного сырья, вместо крахмала, использовать целлюлозу, то получают «гидролизный» спирт, который используют только для технических нужд. Процесс получения этанола из целлюлозы складывается из следующих стадий:

а) гидролиз целлюлозы:

б) брожение под действием ферментов дрожжей:

С 6 Н 12 О 6 ® 2С 2 Н 5 ОН + 2СО 2

В качестве исходного сырья используются отходы деревоперерабатывающей промышленности и гидролиз проводят в жестких условиях в присутствии H 2 SO 4 .

2. Гидратация алкенов. В присутствии катализаторов олифины присоединяют воду, образуя спирты. Присоединение воды к несимметричным алкенам происходит по правилу Морковникова с образованием вторичных и третичных спиртов.

3. Гидролиз галогенпроизводных:

4. Восстановление альдегидов и кетонов:

Восстановление альдегидов дает первичные спирты, восстановление кетонов – вторичные.

5. Восстановление сложных эфиров:

6. Гидролиз сложных эфиров. Реакция обратима и требует регулирования для повышения выхода спиртов:

7. Синтез альдегидов через металлоорганические соединения:

Химические свойства спиртов. Основным структурным элементом, определяющим реакционную способность спиртов является гидроксогруппа. Основными направлениями реакционной способности являются реакции с разрывом связей по направлениям I и II. Акцепторные свойства кислорода обеспечивают высокую полярность связей по этим направлениям.

I направление.

За счет полярности связи О-Н спирты обладают определенной кислотностью и диссоциируют по схеме:

Большей кислотностью обладают первичные спирты, меньшей – третичные и соблюдается последовательность:

Меньшая кислотность третичных спиртов обясняется положительными индукционными эффектами алкильных групп, которые увеличивают электронную плотность на углероде и кислороде.

1. Взаимодействие с металлами:

2. Реакция этерификации:

3. Реакции окисления. В зависимости от природы спирта реакции окисления протекают по-разному. Эти реакции могут проходить как реакции дегидрирования и как реакции окисления. Окисление первичных спиртов дает альдегиды:

Окисление вторичных спиртов дает кетоны:

Третичные спирты окисляются с разрывом углеводородной цепочки и образованием смеси кислот и кетонов:

II направление.

1. Гидрогалогенирование спиртов. Реакцию проводят в присутствии водоотнимающих веществ:

Реакционная способность спиртов изменяется в последовательности:

третичный > вторичный > первичный

2. Взаимодействие с галогенидами фосфора:

3. Внутримолекулярная и межмолекулярная дегидратация спиртов. В жестких условиях, при t > 180 0 С, проходит внутримолекулярная дегидратация в соответствии с правилом Зайцева:

В мягких условиях идет межмолекулярная дегидратация с образованием эфиров:

Физические свойства спиртов и их применение. Спирты с числом углеродных атомов С 1 – С 10 – жидкости, выше – твердые вещества. Растворимость спиртов с увеличением молекулярной массы понижается, температура кипения увеличивается. Аномально высокие температуры кипения для спиртов объясняяются возможностью образования ассоциатов за счет водородных связей

Спирты изостроения имеют более высокие температуры кипения, чем спирты нормального строения.

Метанол. Основное его количество получали путем сухой перегонки древесины. В настоящее время в промышленности метанол получают по следующей схеме:

Метанол имеет широкое и разностороннее применение. Значительные количества его потребляются для получения формальдегида, метиламина, красителей, фармакологических препаратов. Метанол – хороший растворитель и используется для растворения щелочи, употребляется для очистки бензинов, в лакокрасочной промышленности и др. Надо помнить, что метанол – сильнейший яд, вызывающий слепоту и паралич.



Коварность метилового спирта состоит в том, что он очень похож на этанол.

Этанол. Используется в пищевой промышленности для изготовления ликеро-водочной продукции, для получения сложных эфиров, применяемых в кондитерском производстве. В парфюмерии этанол используют как растворитель. Его содержание в кремах – 5-10 %, лосьонах – 10 – 60%, дезодорантах – до 80%).

Высокомолекулярные первичные спирты.

Цетиловый спирт (С 15 Н 31 СН 2 ОН) в составе сложного эфира входит в состав спермацета, выделяемого из черепных костей китов. Спермацет используется в парфюмерии и получении синтетических моющих средств.

Мирициловый спирт (С 30 Н 61 -СН-ОН) в связанном состоянии входит в состав пчелиного воска:

Двухатомные спирты (гликоли)

Двухатомные спирты содержат в своем составе две гидроксильные группы. Общая формула гликолей С n H 2 n (OH) 2 .

По систематической номенклатуре названия двухатомных спиртов образуются от названия соответствующих алканов с прибавлением окончания «диол», положение -ОН групп указывается цифрами

Содержание статьи

СПИРТЫ (алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами)

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO–СH 2 –CH 2 –OH, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH(OH) 2 ® RCH=O + H 2 O

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол СH 3 –C H 2 –OH, пропанол СH 3 –CH 2 –C H 2 –OH.

б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны :

CH 2 =CH–OH ® CH 3 –CH=O

Номенклатура спиртов.

Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»:

В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4):

Рис. 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами.

Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НСє С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH.

Физические свойства спиртов.

Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R, содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов.

Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

2CH 3 OH + 2Na ® 2CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O ® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O

Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент R–O–A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

Рис. 8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разрываются, в результате образуются простые эфиры – соединения, содержащие фрагмент R–О–R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).

Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов.

Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

С 6 Н 12 О 6 ® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия:

СО + 2 Н 2 ® Н 3 СОН

Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12)

Рис. 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ

Применение спиртов.

Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы , содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок .

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин HOCH 2 –CH(OH)–CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН2–(СНОH)3–CН2ОН и сорбит НОСН2– (СНОН)4–СН2OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни .

Михаил Левицкий

Этиловый спирт или винный является широко распространённым представителем спиртов. Известно много веществ, в состав которых наряду с углеродом и водородом входит кислород. Из числа кислородсодержащих соединений мне интересен прежде всего класс спиртов.

Этиловый спирт

Физические свойства спирта . Этиловый спирт С 2 Н 6 О - бес­цветная жидкость со своеобразным запахом, легче воды (удель­ный вес 0,8), кипит при температуре 78°,3, хорошо растворяет многие неорганические и органические вещества. Спирт «ректи­фикат» содержит 96% этилового спирта и 4% воды.

Строение молекулы спирта .Согласно валентности элементов, формуле С 2 Н 6 О соответствуют две структуры:


Чтобы решить вопрос о том, какая из формул соответствует спирту в действительности, обратимся к опыту.

Поместим в пробирку со спиртом кусочек натрия. Тотчас начнётся реакция, сопровождающаяся выделением газа. Нетрудно установить, что этот газ - водород.

Теперь поставим опыт так, чтобы можно было определить, сколько атомов водорода выделяется при реакции из каждой мо­лекулы спирта. Для этого в колбу с мелкими кусочками натрия (рис. 1) прибавим по каплям из воронки определённое количе­ство спирта, например 0,1 грамм-молекулы (4,6 грамма). Выделяю­щийся из спирта водород вытесняет воду из двугорлой склянки в измерительный цилиндр. Объём вытесненной воды в цилиндре соответствует объёму выделившегося водорода.

Рис.1. Количественный опыт получения водорода из этилового спирта.

Так как для опыта была взята 0,1 грамм-молекулы спирта, то водорода удаётся получить (в пересчёте на нормальные условия) около 1,12 литра. Это означает, что из грамм-молекулы спирта нат­рий вытесняет 11,2 литра , т.е. половину грамм-молекулы, иначе го­воря 1 грамм-атом водорода. Следовательно, из каждой молекулы спирта натрием вытесняется только один атом водорода.

Очевидно, в молекуле спирта этот атом водорода находится в особом положе­нии по сравнению с осталь­ными пятью атомами водо­рода. Формула (1) не даёт объяснения такому факту. Согласно ей, все атомы водо­рода одинаково связаны с атомами углерода и, как нам известно, не вытесняются ме­таллическим натрием (нат­рий хранят в смеси углеводородов - в керосине). Наоборот, формула (2) отражает наличие одного атома, находя­щегося в особом положении: он соединён с углеродом через атом кислорода. Можно заключить, что именно этот атом водорода связан с атомом кислорода менее прочно; он оказывается более подвижным и вытесняется натрием. Следовательно, структурная формула этилового спирта:


Несмотря на большую подвижность атома водорода гидроксильной группы по сравнению с другими атомами водорода, этиловый спирт не является электролитом и в водном растворе не диссоциирует на ионы.


Чтобы подчеркнуть, что в молекуле спирта содержится гидроксильная группа - ОН, соединённая с углеводородным радика­лом, молекулярную формулу этилового спирта пишут так:

Химические свойства спирта . Выше мы видели, что этиловый спирт реагирует с натрием. Зная строение спирта, мы можем эту реакцию выразить уравнением:

Продукт замещения водорода в спирте натрием носит назва­ние этилата натрия. Он может быть выделен после реакции (пу­тём испарения избытка спирта) в виде твёрдого вещества.

При поджигании на воздухе спирт горит синеватым, еле за­метным пламенем, выделяя много тепла:

Если в колбе с холодильником нагревать этиловый спирт с галогеноводородной кислотой, например с НВг (или смесью NаВг и Н 2 SО 4 , дающей при реакции бромистый водород), то будет от­гоняться маслянистая жидкость - бромистый этил С 2 Н 5 Вг:

Эта реакция подтверждает наличие гидроксильной группы в молекуле спирта.

При нагревании с концентрированной серной кислотой в каче­стве катализатора спирт легко дегидратируется, т. е. отщепляет воду (приставка «де» указывает на отделение чего-либо):

Эта реакция используется для получения этилена в лаборатории. При более слабом нагревании спирта с серной кислотой (не выше 140°) каждая молекула воды отщепляется от двух молекул спирта, вследствие чего образуется диэтиловый эфир - летучая легко воспламеняющаяся жидкость:

Диэтиловый эфир (иногда называемый серным эфиром) при­меняется в качестве растворителя (чистка тканей) и в медицине для наркоза. Он относится к классу простых эфиров - органи­ческих веществ, молекулы которых состоят из двух углеводород­ных радикалов, соединённых посредством атома кислорода: R - О - R1

Применение этилового спирта . Этиловый спирт имеет большое практическое значение. Много этилового спирта расходуется на получение синтетического каучука по способу академика С. В. Лебедева. Пропуская пары этилового спирта через специальный катализатор, получают дивинил:

который затем может полимеризоваться в каучук.

Спирт идёт на выработку красителей, диэтилового эфира, раз­личных «фруктовых эссенций» и ряда других органических ве­ществ. Спирт как растворитель применяется для изготовления парфюмерных продуктов, многих лекарств. Растворяя в спирте смолы, готовят различные лаки. Высокая теплотворная способность спирта обусловливает применение его в качестве горючего (автомобильного топлива = этанола).

Получение этилового спирта . Мировое производство спирта измеряется миллионами тонн в год.

Распространённым способом получения спирта является бро­жение сахаристых веществ в присутствии дрожжей. В этих низ­ших растительных организмах (грибках) вырабатываются особые вещества - ферменты, которые служат биологическими катали­заторами реакции брожения.

В качестве исходных материалов в производстве спирта берут семена злаков или клубни картофеля, богатые крахмалом. Крах­мал с помощью солода, содержащего фермент диастаз, сперва превращают в сахар, который затем сбраживают в спирт.

Учёные много работали над тем, чтобы заменить пищевое сырьё для получения спирта более дешёвым непищевым сырьём. Эти по­иски увенчались успехом.

В последнее время в связи с тем, что при крекинге нефти образуется много этилена, стали

Реакция гидратации этилена (в присутствии серной кислоты) была изучена ещё А. М. Бутлеровым и В. Горяиновым (1873), который предсказал и её промышленное значение. Разработан и внедрен в промышленность также метод прямой гидратации этилена пропусканием его в смеси с парами воды над твердыми катализаторами. Получение спирта из этилена очень экономично, так как этилен входит в состав газов крекинга нефти и других промышленных газов и, следовательно, является широкодоступным сырьем.

Другой способ основан на использовании в качестве исходного продукта ацетилена. Ацетилен подвергается гидратации по реакции Кучерова, а образующийся уксусный альдегид каталитически восстанавливают водородом в присутствии никеля в этиловый спирт. Весь процесс гидратации ацетилена с последующим восстановлением водородом на никелевом катализаторе в этиловый спирт может быть представлен схемой.

Гомологический ряд спиртов

Кроме этилового спирта, известны и другие спирты, сходные с ним по строению и свойствам. Все они могут рассматриваться как производные соответствующих предельных углеводородов, в молекулах которых один атом водорода заменён гидроксильной группой:

Таблица

Углеводороды

Спирты

Температура кипения спиртов в º С

Метан СН 4 Метиловый СН 3 ОН 64,7
Этан С 2 Н 6 Этиловый С 2 Н 5 ОН илиСН 3 - СН 2 - ОН 78,3
Пропан С 3 Н 8 Пропиловый С 4 Н 7 ОН или СН 3 - СН 2 - СН 2 - ОН 97,8
Бутан С 4 Н 10 Бутиловый С 4 Н 9 ОН илиСН 3 - СН 2 - СН 2 - ОН 117

Будучи сходны по химическим свойствам и отличаясь друг от друга по составу молекул на группу атомов СН 2 , эти спирты со­ставляют гомологический ряд. Сравнивая физические свойства спиртов, мы в этом ряду, так же как и в ряду углеводородов, на­блюдаем переход количественных изменений в изменения качест­венные. Общая формула спиртов данного ряда R - ОН (где R - углеводородный радикал).

Известны спирты, в молекулы которых входит несколько гидроксильных групп, например:

Группы атомов, обусловливающие характерные химические свойства соединений, т. е. их химическую функцию, называются функциональными группами.

Спиртами называются органические вещества, моле­кулы которых содержат одну или несколько функциональных гидроксильных групп, соединённых с углеводородным радикалом .

По своему составу спирты отличаются от углеводородов, соот­ветствующих им по числу углеродных атомов, наличием кисло­рода (например, С 2 Н 6 и С 2 Н 6 О или С 2 Н 5 ОН). Поэтому спирты можно рассматривать как продукты частичного окисления угле­водородов.

Генетическая связь между углеводородами и спиртами

Произвести непосредственное окисление углеводорода в спирт довольно трудно. Практически проще это сделать через галогенопроизводное углеводорода. Например, чтобы получить этиловый спирт, исходя из этана С 2 Н 6 , можно сначала получить бромистый этил по реакции:


а затем бромистый этил превратить в спирт нагреванием с водой в присутствии щёлочи:


Щёлочь при этом нужна, чтобы нейтрализовать образующийся бромистый водород и устранить возможность реакции его со спиртом, т.е. сдвинуть эту обратимую реакцию вправо.

Подобным же образом метиловый спирт может быть получен по схеме:


Таким образом, углеводороды, их галогенопроизводные и спирты находятся между собой в генетической связи (связи по происхождению).

Следующий класс веществ, которые хотелось бы рассмотреть - это спирты. Это соединения, имеющие в составе группу -OH, связанную с атомом углерода. Такая группа одновалентна и из любого алкана можно сделать спирт, если поменять один из водородов на OH. Например, метану соответствует метиловый спирт, этану - этиловый и так далее. Также они сокращённо именуются с окончанием "ол": метанол, этанол, пропанол.

Метанол, этанол, пропанол


Начиная с пропанола, у спиртов появляется изомерия - помимо того, что сами алканы имеют изомеры, так ещё и гидроксильная группа может быть присоединена к разным атомам углерода. Например, названию "бутанол" соответствуют уже 4 различных по строению молекулы.

Четыре изомерных бутиловых спирта: н-бутанол, втор-бутанол, трет-бутанол, изобутанол.


Как видно, тот спирт, что сохраняет линейное строение, по аналогии с алканами называется "нормальным". Такие спирты также являются первичными, поскольку атом углерода, соединённый с гидроксильной группой, соединён напрямую только с одним атомом углерода. Существуют также вторичные и третичные спирты (две средних структуры на рисунке).

Спирты чем-то схожи в свойствах с водой: вода тоже содержит гидроксил (а так называется группа -OH), но связанную с атомом водорода (поэтому её можно назвать гидроксидом водорода, хотя никто так не делает). Благодаря гидроксильным группам молекулы оказываются более сильно связаны друг с другом (из-за водородных связей), поэтому даже низший спирт - метанол - представляет собой жидкость, хоть и довольно легко испаряющуюся. Жидкими являются почти все низшие спирты, вплоть до октанола. Опять же, здесь возникает сложность из-за большого количества изомеров.
Общая формула спиртов C n H 2n+1 OH.
Самый известный из спиртов - это этанол, он же этиловый спирт - тот самый, что содержится в алкогольных напитках. Он кипит при 78 и перегонкой его можно выделить из раствора, но концентрацию таким образом нельзя поднять выше 96% (что не мешает, однако, получать 100%-ый этанол другими способами, например, удаляя воду из 96%-ного при помощи осушителя). Наверняка все слышали про метанол, который по виду и запаху неотличим от этанола, но смертельно ядовит. Однако если не пробовать его на вкус, то метанол - отличный растворитель, а также топливо и полупродукт для множества химических процессов.

Поскольку метанол и этанол контролируются законом, то зачастую вместо них используют следующий спирт - пропанол. Причём н-пропанол встречается гораздо реже своего изомера - изопропанола, который часто используется как растворитель и обезжириватель (для спиртовок тоже подходит, если что). Он отличается запахом от метанола и этанола, более вязкий (особенно при низкой температуре) и кипит при немного более высокой температуре.

Бутанол и примеси более тяжёлых спиртов составляют основу сивушных масел - они в небольших количествах образуются при брожении и имеют неприятный тяжёлый запах. В остальном такие спирты используются преимущественно как реагенты для получения других соединений.

Функциональных групп в молекуле может быть несколько, в частности - спиртовых. Все рассматривавшиеся выше соединения называются одноатомными спиртами - по количеству гидроксильных групп. Существуют также двухатомный спирт этиленгликоль и трёхатомный спирт глицерин:


Этиленгликоль и глицерин


Они имеют свойства, аналогичные первичным спиртам, но ещё более выраженные: это густые жидкости с высокой температурой кипения (этиленгликоль используется как компонент теплоносителей в отоплении, а также как компонент антифризов "тосол"). И тот, и другой смешиваются с водой в любых пропорциях. В отличие от этиленгликоля, глицерин малотоксичен, а вдобавок ещё и имеет сладкий вкус (отсюда название: "гликос" - сладкий), из-за некоторого сходства в строении с углеводами, которые тоже формально являются спиртами. Это объясняет, в частности, почему углеводы (в том числе сахар) хорошо растворяются в воде.

Спирты похожи на алканы, в молекулу которых "встроили" атом кислорода. И действительно во многих учебниках пишут, что метанол можно получить неполным окислением метана. Для этого, правда, требуются совершенно особые условия, реализуемые только в промышленности: высокие давления, контроль температуры, использование катализаторов. Также его получают из т.н. "синтез-газа" - смеси монооксида углерода и водорода, а синтез-газ, в свою очередь, получают из метана и воды при высокой температуре.


Получение метанола из синтез-газа


Вообще метанол - крупнотоннажный продукт (в 2004 году его производство оценивалось в 32млн. тонн во всём мире), а промышленная химия обычно сильно отличается от лабораторной (сравните ректификационные колонны и лабораторный перегонный аппарат). В небольших количествах метанол образуется при сухой перегонке древесины, поэтому другое его название - древесный спирт.

Для получения этанола используют брожение: некоторые виды микроорганизмов могут превращать сахара, присутствующие в растительном материале (например, в пшенице или сахарном тростнике) в этанол, получая при этом энергию. Этанол затем отделяют ректификацией и используют, например, как добавку к автомобильному топливу (т.н. биотопливо). Таким образом производится порядка 60млн. тонн этанола в год (в основном в США и Бразилии). При таких масштабах и не хочется говорить о получении из нефтепродуктов, но всё-таки есть способ получения из этилена: углеводорода, в котором два атома углерода связаны не одной, а двойной связью. При определённых условиях эта связь может раскрываться, присоединяя молекулу воды. При этом образуется этанол; таким же образом могут быть получены другие спирты из соответствующих алкенов.


Реакция гидратация этилена


Метанол окисляется в формальдегид или муравьиную кислоту. Этанол, соответственно - в ацетальдегид или уксусную кислоту.


Чем и в каких условиях, а также о прочих реакциях спиртов будет описано в следующей статье.

Статистику по производству биоэтанола можно найти здесь: http://ethanolrfa.org/resources/industry/statistics/

Спирты - крупная группа органических химических веществ. Она включает подклассы одноатомных и многоатомных спиртов, а также все вещества комбинированного строения: альдегидоспирты, производные фенола, биологические молекулы. Эти вещества вступают в множество типов реакций как по гидроксильной группе, так и по атому углерода, несущему ее. Эти химические свойства спиртов следует изучить детально.

Виды спиртов

В веществах спиртов содержится гидроксильная группа, присоединенная к несущему углеродному атому. В зависимости от количества атомов углерода, с которыми соединен несущий С, спирты делятся на:

  • первичные (соединенные с концевым углеродом);
  • вторичные (соединены с одной гидроксильной группой, одним водородом и двумя углеродными атомами);
  • третичные (соединены с тремя углеродными атомами и одной гидроксильной группой);
  • смешанные (многоатомные спирты, в которых имеются гидроксильные группы у вторичных, первичных или третичных углеродных атомов).

Также спирты делятся в зависимости от количества гидроксильных радикалов на одноатомные и многоатомные. Первые содержат только одну гидроксильную группу у несущего углеродного атома, к примеру, этанол. Многоатомные спирты содержат две и более гидроксильные группы у разных несущих углеродных атомов.

Химические свойства спиртов: таблица

Наиболее удобно подать интересующий нас материал посредством таблицы, которая отражает общие принципы реакционной способности спиртов.

Реакционная связь, тип реакции

Реагент

Продукт

Связь О-Н, замещение

Активный металл, гидрид активного металла, щелочь или амиды активных металлов

Алкоголяты

Связь С-О и О-Н, межмолекулярная дегидратация

Спирт при нагревании в кислой среде

Простой эфир

Связь С-О и О-Н, внутримолекулярная дегидратация

Спирт при нагревании над концентрированной серной кислотой

Непредельный углеводород

Связь С-О, замещение

Галогеноводород, тионилхлорид, квазифосфониевая соль, галогениды фосфора

Галогеналканы

Связь С-О - окисление

Доноры кислорода (перманганат калия) с первичным спиртом

Альдегид

Связь С-О - окисление

Доноры кислорода (перманганат калия) с вторичным спиртом

Молекула спирта

Кислород (горение)

Углекислый газ и вода.

Реакционная способность спиртов

Благодаря наличию в молекуле одноатомного спирта углеводородного радикала - связи С-О и связи О-Н - данный класс соединений вступает в многочисленные химические реакции. Они определяют химические свойства спиртов и зависят от реакционной способности вещества. Последняя, в свою очередь, зависит от длины углеводородного радикала, присоединенного у несущему углеродному атому. Чем он больше, тем ниже полярность связи О-Н, из-за чего реакции, идущие с отщеплением водорода от спирта, будет протекать медленнее. Это же снижает константу диссоциации упомянутого вещества.

Химические свойства спиртов также зависят от количества гидроксильных групп. Одна смещает электронную плотность на себя вдоль сигма-связей, что увеличивает реакционную способность по О-Н группе. Поскольку это поляризует связь С-О, то реакции с ее разрывом идут активнее у спиртов, у которых имеется две и более О-Н групп. Потому многоатомные спирты, химические свойства которых более многочисленные, охотнее вступают в реакции. Также они содержат несколько спиртовых групп, из-за чего свободно могут вступать в реакции по каждой из них.

Типичные реакции одноатомных и многоатомных спиртов

Типичные химические свойства спиртов проявляются только в реакции с активными металлами, их основаниями и гидридами, кислотами Льюиса. Также типичными являются взаимодействия с галогенводородами, галогенидами фосфора и прочими компонентами с получением галогеналканов. Также спирты являются и слабыми основаниями, потому вступают в реакции с кислотами, образуя при этом галогенводороды и сложные эфиры неорганических кислот.

Простые эфиры образуются из спиртов при межмолекулярной дегидратации. Эти же вещества вступают в реакции дегидрирования с образованием альдегидов из первичного спирта и кетонов из вторичного. Третичные спирты в подобные реакции не вступают. Также химические свойства этилового спирта (и других спиртов) оставляют возможность полного их окисления кислородом. Это простая реакция горения, сопровождающаяся выделением воды с углекислым газом и некоторого количества тепла.

Реакции по атому водорода связи О-Н

Химические свойства одноатомных спиртов допускают разрыв связи О-Н и отщепление водорода. Эти реакции протекают при взаимодействии с активными металлами и их основаниями (щелочами), с гидридами активных металлов, а также с кислотами Льюиса.

Также спирты активно вступают в реакции со стандартными органическими и неорганическими кислотами. В данном случае продуктов реакции является сложный эфир или галогенуглеводород.

Реакции синтеза галогеналканов (по связи С-О)

Галогеналканы - это типичные соединения, которые могут быть получены из спиртов при протекании нескольких типов химических реакций. В частности, химические свойства одноатомных спиртов позволяют вступать во взаимодействие с галогенводородами, с галогенидами трех- и пятивалентного фосфора, квазифосфониевыми солями, тионилхлоридом. Также галогеналканы из спиртов могут быть получены промежуточным путем, то есть синтезом алкилсульфоната, который позже вступит в реакцию замещения.

Пример первой реакции с галогенводородом указан на графическом приложении выше. Здесь бутиловый спирт реагирует с хлоридом водорода с образованием хлорбутана. В общем, класс соединений, содержащих хлор и углеводородный насыщенный радикал, называется алкилхлоридом. Побочным продуктом химического взаимодействия является вода.

Реакции с получением алкилхлорида (йодида, бромида или фторида) достаточно многочисленные. Типичный пример - взаимодействие с трибромидом фосфора, пентахлоридом фосфора и прочими соединениями данного элемента и его галогенидов, перхлоридов и перфторидов. Они протекают по механизму нуклеофильного замещения. С тионилхлоридом спирты реагируют также с образованием хлоралкана и выделением SO 2 .

Наглядно химические свойства одноатомных предельных спиртов, содержащих насыщенный углеводородный радикал, представлены в виде реакций на иллюстрации ниже.

Спирты легко взаимодействуют с квазифосфониевой солью. Однако данная реакция наиболее выгодна при протекании у одноатомных вторичных и третичных спиртов. Они региоселективны, позволяют "имплантировать" галогеновую группу в строго определенное место. Продукты таких реакций получаются с высокой массовой долей выхода. А многоатомные спирты, химические свойства которых несколько отличаются от таковых у одноатомных, могут изомеризоваться в ходе реакции. Потому получение целевого продукта затрудняется. Пример реакции на изображении.

Внутримолекулярная и межмолекулярная дегидратация спиртов

Гидроксильная группа, расположенная у несущего углеродного атома, может отщепляться при помощи сильных акцепторов. Так протекают реакции межмолекулярной дегидратации. При взаимодействии одной молекулы спирта с другой в растворе концентрированной серной кислоты молекула воды отщепляется от обеих гидроксильных групп, радикалы которых соединяются в молекулу простого эфира. При межмолекулярной дегидратации этаналя можно получить диоксан - продукт дегидратации по четырем гидроксильным группам.

При внутримолекулярной дегидратации продуктом является алкен.