Неорганические вещества кратко. Химическая организация клетки

Из неорганических веществ клетки вода составляет около 65% ее массы: в молодых быстрорастущих клетках до 95%, в старых - около 60%. Роль воды в клетках очень велика, она является средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе.

Органические вещества - составляют 20-30% состава клетки. Они могут быть простыми (аминокислоты, глюкоза, жирные кислоты) и сложными (белки, полисахариды, нуклеиновые кислоты, липиды). Наиболее важное значение имеют белки, жиры, углеводы, нуклеиновые кислоты.

Белки - это основные и наиболее сложные вещества любой клетки. По размерам белковая молекула в сотни и тысячи раз превосходит молекулы неорганических соединений. Белковые молекулы образуются из простых соединений — аминокислот (в естественных белках содержится 20 аминокислот). Объединяясь в различной последовательности и количестве, они образуют большое разнообразие (до 1000) белков. Их роль в жизни клетки огромна: строительный материал организма, катализаторы (белки-ферменты ускоряют химические реакции), транспорт (гемоглобин крови доставляет клеткам кислород и питательные вещества и уносит углекислый газ и продукты распада). Белки выполняют защитную функцию, энергетическую. Углеводы - органические вещества, состоящие из углерода, водорода и кислорода. Наиболее простые из них моносахариды - гексоза, фруктоза, глюкоза (содержатся в фруктах, меде), галактоза (в молоке) и полисахариды - состоящие из нескольких простых углеводов. Сюда относятся крахмал, гликоген. Углеводы - основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.) и играют роль запасных веществ. Липиды - нерастворимые в воде жиры и жироподобные вещества. Они являются основным структурным компонентом биологических мембран. Липиды выполняют энергетическую функцию, в них содержатся жирорастворимые витамины. Нуклеиновые кислоты - (от латинского слова «нуклеус» - ядро) - образуются в ядре клетки. Они бывают двух типов: дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Биологическая роль их очень велика. Они определяют синтез белков и передачу наследственной информации.

Вода и минеральные вещества

Живая клетка содержит около 70% Н2О от массы. Н2О находится в двух формах:

1) Свободная (95%) – в межклеточном пространстве, сосудах, вакуолях, полостях органов.

2) Связанная (5%) – с высоко-молекулярными органическими веществами.

Свойство:

8) Универсальный растворитель. По растворимости в воде вещества делятся на гидрофильные – растворимые и гидрофобные – не растворимые (жиры, нуклеиновые кислоты, некоторые белки).

9) Участвует в био-хим. реакциях (гидролиз, окислительно-восстановительные, фотосинтез)

10) Участвует в явлениях осмоса – прохождение растворителя через полупроницаемую оболочку в сторону растворимого вещества за счёт силы осмотического давления. Осмотическое давление у млекопитающих равно 0,9% р-р NaCl.

11) Транспортная – вещества растворимые в воде транспортируются в клетку или из неё путём диффузии.

12) Вода практически не сжимается, определяя этим тургор.

13) Обладает силой поверхностного натяжения – это сила осуществляет капиллярный кровоток восходящий и нисходящий в растениях.

14) Обладает высокой теплоёмкостью, теплопроводностью, которое поддерживает тепловое равновесие.

При недостатке Н2О нарушаются процессы обмена веществ, потеря 20% Н2О приводит к гибели.

Минеральные вещества.

Минеральные вещества в клетке находятся в виде солей. По совей реакции растворы могут быть кислыми, основными, нейтральными. Эту концентрацию выражают при помощи водородного показателя рН.

рН = 7 нейтральная реакция жидкости

рН < 7 кислая

рН > 7 основная

Изменение рН на 1-2 единицы губительно для клетки.

Функция минеральных солей:

1) Поддерживают тургор клетки.

2) Регулируют био-хим. процессы.

3) Поддерживают постоянный состав внутренней среды.

1) Ионы кальция стимулируют мышечное сокращение. Снижение концентрации в крови вызывает судороги.

2) Соли калия, натрия, кальция. Соотношение этих ионов обеспечивает нормальное сокращение сердечной системы.

3) Йод компонент щитовидной железы.

9) Органические соединения клетки: углеводы, липиды, белки, аминокислоты, ферменты.

I. Углеводы

Входят в состав клеток всех живых организмов. В животных клетках 1-5% углеводов, в растительных до 90% (фотосинтез).

Хим. состав: C, H, O. Мономер – глюкоза.

Группы углеводов:

1) Моносахариды – бесцветные, сладки, хорошо растворимы в воде (глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза).

2) Олигосахарида (дисахариды) – сладкие, растворимые (сахароза, мальтоза, лактоза).

3) Полисахариды – несладкие, плохо растворимы в воде (крахмал, целлюлоза – в растительных клетках, хитин у грибов и членистоногих, гликоген у животных и человека). Гликоген запасается в мышцах, печени. При его расщеплении выделяется глюкоза.

Функции углеводов:

1) Структурная – входит в состав оболочек растительных клеток.

2) Защитная – секреты выделяемые железами содержат углеводы, которые предохраняют полые органы (бронхи, желудок, кишечник) от мех. Повреждений, а растения от проникновения болезнетворных бактерий

3) Запасающая. Питательные вещества (крахмал, гликоген) откладываются в клетках в запас.

4) Строительная. Моносахариды служат исходным материалом для построения органических веществ.

5) Энергетическая. 60% энергии организм получает при распаде углеводов. При расщеплении 1 грамма углевода выделяется 17,6 кДж энергии.

II. Липиды (жиры, жиро-подобные соединения).

Хим. состав

C, O, H. Мономер – глицерин и высоко-молекулярные жирные кислоты.

Свойства: не растворимы в воде, растворимы в органических растворителях (бензин, хлороформ, эфир, ацетон).

По хим. строению липиды делятся на след группы:

1) Нейтральная. Они делятся на твёрдые (при 20 градусах остаются твёрдыми), мягкие (сливочное масло и жир чел. тела), жидкие (растительные масла).

2) Воска. Покрывают: кожу, шерсть, перья животных, стебли, листья, плоды растений.

Сложные эфиры образуемые жирными кислотами и многоатомным спиртом.

3) Фосфолипиды. Один, два остатка жирных кислот, замещены остатком фосфорной кислоты. Основное компонент клеточной мембраны.

4) Стероиды – это липиды не содержащие жирных кислот. К стероидам относятся гормоны (кортизон, половые), витамины (A, D, E).

Стероид холестерин: важный компонент клеточной мембраны. Избыток холестерина может привести к заболеваниям сердечно-сосудистой системы и образованию желчных камней.

Функции липидов:

1) Структурная (строительная) – входя в состав клеточных мембран.

2) Запасающая – откладываются в запас в растениях в плодах и семенах, у животных в подкожно жировой клетчатке. При окислении 1г жира вырабатывается более 1г воды.

3) Защитная – служат для теплоизоляции организмов, т.к. обладает плохой теплопроводностью.

4) Регуляторная – гормоны (кортикостерон, андрогены, эстрогены и др.) регулируют обменные процессы в организме.

5) Энергетическая: при окислении 1г жира выделяется 38,9 кДЖ.

III. Белки.

Высокомолекулярные полимерные органические соединения. Содержание белков в различных клетках от 50-80%. Каждый чел. на Земле имеет свой не повторимый набор только ему свойственных белков (исключение однояйцевые близнецы). Специфичность белковых наборов обеспечивает иммунный статус каждого человека.

Хим. состав: C, O, N, H, S, P, Fe.

Мономеры. Всего их 20, из них 9 незаменимых. Они поступают в организм с пищей в готовом виде.

Свойства:

1) Денатурация – разрушение белковых молекул под воздействием высокой температуры, кислот, хим. веществ, обезвоживания, облучения.

2) Ренатурация – восстановление прежней структуры при возвращении нормальных условий среды (кроме первичной).

Строение (уровни организации белковой молекулы):

1) Первичная структура.

Это полипептидная цепочка состоящая из последовательности аминокислот.

2) Вторичная структура.

Спирально-закрученная полипептидная цепь.

3) Третичная структура.

Спираль принимает причудливую конфигурацию – глобула.

4) Четвертичная структура.

Несколько глобул соединяются в сложный комплекс.

Функции белков:

1) Каталитическая (ферментативная) – белки служат катализаторами (ускорителями био-хим. реакций).

2) Структурная – входят в состав мембран, органелл клетки, костей, волос, сухожилий и т.д.

3) Рецепторная – белки рецепторы воспринимают сигнал из внешней среды и передают их в клетку.

4) Транспортная – белки-переносчики осуществляют перенос веществ через клеточные мембраны (белок гемоглобин переносит кислород из лёгких в клетки др. тканей).

5) Защитная – белки предохраняют организм от повреждения и вторжения чужеродных организмов (белки иммуноглобулины обезвреживают чужеродные белки. Интерферон подавляет развитие вирусов).

6) Двигательная – белки актин и лизин участвуют в сокращении мышечных волокон.

7) Регуляторная – белки гормоны регулируют физиологические процессы. Например инсулин, глюкагон регулируют уровень глюкозы в крови.

8) Энергетическая – при расщеплении 1г белка выделяется 17,6 кДЖ энергии.

IV. Аминокислоты.

Это мономер белков.

Формула:

В состав аминокислоты входят аминогруппы H2N и карбоксильная группа COOH. Аминокислоты отличаются друг от друга своими радикалами R.

Аминокислоты соединяются пептидными связями в полипептидные цепочки.

NH-CO---NH-CO---NH-CO

Полипептидная связь.

Карбоксильная группа одной аминокислоты присоединяется к аминогруппе соседней аминокислоты.

V. Ферменты.

Это белковые молекулы способные катализировать (ускорять био-хим. реакции в клетке в сони, миллионы раз).

Функции и свойства:

Ферменты специфичны, то есть катализируют только определённую хим. реакцию или сходные.

Действуют в строго определённой последовательности.

Активность ферментов зависит от температуры, реакции среды, наличия коферментов- небелковые соединения, ими могут служить витамины, ионы, различные Me. Оптимальная температура действия ферментов 37-40 градусов.

Активность ферментов регулируется:

При повышении температур усиливается, под действием лекарств, ядов, подавляется.

Отсутствие или недостаток ферментов приводит к тяжёлым заболеваниям (гемофилия вызвана недостатком фермента отвечающего за свёртываемость крови).

Ферменты используются в медицине для получения вакцин. В промышленности для получения из крахмала сахара, из сахара спирта и др. веществ.

Строение:

В активном центре субстрат взаимодействует с ферментом, которые подходят друг к другу как «ключ к замку».

10) Нуклеиновые кислоты: ДНК, РНК, АТФ.

ДНК, РНК впервые выделены из ядра клеток в 1869 г. швейцарским учёным Мишером. Нуклеиновые кислоты – это полимеры мономером которого являются нуклеотиды состоящие из 2 нуклеиновых оснований аденин и гуанин и 3 пиримидиновых цитозин, урацил, тимин.

I) ДНК (дезоксирибонуклеиновая кислота).

Расшифровали в 1953 г. Уотсон и Крик. 2 нити спирально обвивающие друг друга. ДНК находится в ядре.

Нуклеотид состоит из 3 остатков:

1) Углеводный – дезоксирибоза.

2) Фосфорной кислоты.

3) Азотистые основания.

Нуклеотиды отличаются друг от друга только азотистыми основаниями.

Ц – цитидиловый, Г – гуаниновый, Т – тимидиловый, А – адениновый.

Сборка молекул ДНК.

Соединение нуклеотидов в нити ДНК происходит посредством ковалентных связей через углевод одного нуклеотида и остатком фосфорной кислоты соседнего.

Соединение двух нитей.

Две нити соединяются друг с другом водородными связями между азотистыми основаниями. Азотистые основания соединяются по принципу комплементарности А-Т, Г-Ц. Комплементарность (дополнение) – строгое соответствие нуклеотидов расположенных в парных нитях ДНК. В азотистых основаниях находится генетический код.

Свойства и функции ДНК:

I) Репликация (редупликация) – само удваивание. Происходит в синтетический период интерфазы.

1) Фермент разрывает водородные связи и спирали раскручиваются.

2) Одна цепь отделяется от другой части молекулы ДНК (каждая цепь используется в качестве матрицы).

3) На молекулы воздействует фермент ДНК – полимераза.

4) Присоединение каждой цепи ДНК комплементарных нуклеотидов.

5) Образование двух молекул ДНК.

II) Хранение наследственной информации в виде последовательности нуклеотидов.

III) Передача на ген. инф.

IV) Структурная ДНК присутствует в хромосоме в качестве структурного компонента.

II) РНК (рибонуклеиновая кислота).

Полимер состоящий из одной цепочки. Они находятся: в ядрышке, цитоплазме, рибосомах, митохондриях, пластидах.

Мономер – нуклеотид состоящий из 3 остатков:

1) Углеводный – рибоза.

2) Остаток фосфорной кислоты.

3) Азотистое основание (непарные) (А, Г, Ц, У – вместо тимина).

Функции РНК: передача и реализация наследственной информации через синтез белка.

Типы РНК:

1) Информационное (иРНК) или матричная (мРНК) 5% всей РНК.

Она синтезируется в процессе транскрипции на определённом участке молекулы ДНК – гене. иРНК переносит инф. О структуре белка (последовательность нуклеотидов) из ядра в цитоплазму на рибосомы и становится матрицей для синтеза белка.

2) Рибосомные (рибосомальный рРНК) 85% всей РНК, синтезируется в ядрышке, входят в состав хромосом, формируют активный центр рибосомы где происходит биосинтез белка.

3) Транспортный (тРНК) 10% всей РНК, образуется в ядре и переходит в цитоплазму и транспортируют аминокислоты к месту синтеза белка, то есть к рибосомам. Поэтому имеет форму листа клевера:

III) АТФ (аденозинтрифосфорная кислота).

Нуклеотид состоящий из 3 остатков:

1) Азотистое основание – аденин.

2) Углеводный остаток – рибоза.

3) Три остатка фосфорной кислоты.

Связи между остатками фосфорной кислоты богаты энергией и называются макроэлементами. При отщеплении 1 молекулы фосфорной кислоты АТФ переходит в АДФ, двух молекула на АМФ. При этом выделяется энергия 40 кДЖ.

АТФ (три) > АДФ (ди) > АМФ (моно).

АТФ синтезируется в митохондриях, в результате реакции фосфорилирование.

Один остаток фосфорной кислоты присоединяется к АДФ. Они всегда есть в клетке, как продукт её жизнедеятельности.

Функции АТФ: универсальный хранитель и переносчик информации.

Впервые химические вещества классифицировал в конце IX столетия арабский ученый Абу Бакр ар-Рази. Он, опираясь на происхождение веществ, распределили их по трем группам. В первой группе он отвел место минеральным, во второй - растительным и в третьей - животным веществам.

Этой классификации было суждено просуществовать почти целое тысячелетие. Лишь в XIX веке из тех групп сформировали две - органические и неорганические вещества. Химические вещества обоих типов строятся благодаря девяноста элементам, внесенным в таблицу Д. И. Менделеева.

Группа неорганических веществ

Среди неорганических соединений различают простые и сложные вещества. Группа простых веществ объединяет металлы, неметаллы и благородные газы. Сложные вещества представлены оксидами, гидроксидами, кислотами и солями. Все могут строиться из любых химических элементов.

Группа органических веществ

В состав всех органических соединений в обязательном порядке входит углерод и водород (в этом их принципиальное отличие от минеральных веществ). Вещества, образованные C и H называются углеводородами - простейшими органическими соединениями. В составе производных углеводородов находится азот и кислород. Они, в свою очередь, классифицированы на кислород- и азотсодержащие соединения.

Группа кислородсодержащих веществ представлена спиртами и эфирами, альдегидами и кетонами, карбоновыми кислотами, жирами, восками и углеводами. К азотсодержащим соединениям причислены амины, аминокислоты, нитросоединения и белки. У гетероциклических веществ положение двояко - они, в зависимости от строения, могут относиться и к тому и к другому виду углеводородов.

Химические вещества клетки

Существование клеток возможно, если в их состав входят органические и неорганические вещества. Они погибают, когда в них отсутствует вода, минеральные соли. Клетки умирают, если сильно обеднены нуклеиновыми кислотами, жирами, углеводами и белками.

Они способны к нормальной жизнедеятельности, если в них находится несколько тысяч соединений органической и неорганической природы, способных вступать во множество различных химических реакций. Биохимические процессы, текущие в клетке - основа ее жизнедеятельности, нормального развития и функционирования.

Химические элементы, насыщающие клетку

Клетки живых систем содержат группы химических элементов. Они обогащены макро-, микро- и ультрамикроэлементами.

  • Макроэлементы, прежде всего, представлены углеродом, водородом, кислородом и азотом. Эти неорганические вещества клетки образуют практически все ее органические соединения. А еще к ним причислены жизненно необходимые элементы. Клетка не способна жить и развиваться без кальция, фосфора, серы, калия, хлора, натрия, магния и железа.
  • Группа микроэлементов образована цинком, хромом, кобальтом и медью.
  • Ультрамикроэлементы - еще одна группа, представляющая важнейшие неорганические вещества клетки. Группа сформирована золотом и серебром, оказывающим бактерицидное действие, ртутью, препятствующей обратному всасыванию воды, заполняющей почечные канальцы, оказывающей влияние на ферменты. В нее же включена платина и цезий. Определенную роль в ней отводят селену, дефицит которого ведет к различным видам рака.

Вода в составе клетки

Важность воды, распространенного на земле вещества для жизни клетки, неоспорима. В ней растворяются многие органические и неорганические вещества. Вода - та благодатная среда, где протекает невероятное количество химических реакций. Она способна растворять продукты распада и обмена. Благодаря ей клетку покидают шлаки и токсины.

Эта жидкость наделена высокой теплопроводностью. Это позволяет теплу равномерно распространяться по тканям тела. У нее существенная теплоемкость (способность поглощать теплоту, когда собственная температура изменяется минимально). Такая способность не позволяет возникать в клетке резким перепадам температур.

Вода обладает исключительно высоким поверхностным натяжением. Благодаря ему растворенные неорганические вещества, как и органические, без труда передвигаются по тканям. Множество небольших организмов, используя особенность поверхностного натяжения, держатся на водной поверхности и свободно по ней скользят.

Тургор растительных клеток зависит от воды. С опорной функцией у определенных видов животных справляется именно вода, а не какие-нибудь другие неорганические вещества. Биология выявила и изучила животных с гидростатическими скелетами. К ним относятся представители иглокожих, круглых и кольчатых червей, медуз и актиний.

Насыщенность клеток водой

Работающие клетки заполнены водой на 80 % от их общего объема. Жидкость пребывает в них в свободной и связанной форме. Белковые молекулы прочно соединяются со связанной водой. Они, окруженные водной оболочкой, изолируются друг от дружки.

Молекулы воды полярны. Они образуют водородные связи. Благодаря водородным мостикам вода обладает высокой теплопроводностью. Связанная вода позволяет клеткам выдерживать пониженные температуры. На долю свободной воды приходится 95 %. Она способствует растворению веществ, вовлекаемых в клеточный обмен.

Высокоактивные клетки в тканях мозга содержат до 85 % воды. Мышечные клетки насыщены водой на 70 %. Менее активным клеткам, образующим жировую ткань, достаточно 40 % воды. Она в живых клетках не только растворяет неорганические химические вещества, она ключевой участник гидролиза органических соединений. Под ее воздействием органические вещества, расщепляясь, превращаются в промежуточные и конечные вещества.

Важность минеральных солей для клетки

Минеральные соли представлены в клетках катионами калия, натрия, кальция, магния и анионами HPO 4 2- , H 2 PO 4 - , Cl - , HCO 3 - . Правильные пропорции анионов и катионов создают необходимую для жизни клетки кислотность. Во многих клетках поддерживается слабощелочная среда, которая практически не меняется и обеспечивает их стабильное функционирование.

Концентрация катионов и анионов в клетках отлична от их соотношения в межклеточном пространстве. Причина тому - активная регуляция, направленная на транспортировку химических соединений. Такое течение процессов обуславливает постоянство химических составов в живых клетках. После гибели клеток концентрация химических соединений в межклеточном пространстве и цитоплазме обретает равновесие.

Неорганические вещества в химической организации клетки

В химическом составе живых клеток нет каких-либо особых элементов, характерных только для них. Это определяет единство химических составов живых и неживых объектов. Неорганические вещества в составе клетки играют огромную роль.

Сера и азот помогают формироваться белкам. Фосфор участвует в синтезе ДНК и РНК. Магний - важная составляющая ферментов и молекул хлорофилла. Медь необходима окислительным ферментам. Железо - центр молекулы гемоглобина, цинк входит в состав гормонов, вырабатываемых поджелудочной железой.

Важность неорганических соединений для клеток

Соединения азота преобразуют белки, аминокислоты, ДНК, РНК и АТФ. В растительных клетках ионы аммония и нитраты в процессе окислительно-восстановительных реакций превращаются в NH 2 , становятся участниками синтеза аминокислот. Живые организмы используют аминокислоты для формирования собственных белков, необходимых для строительства тел. После гибели организмов белки вливаются в круговорот веществ, при их распаде азот выделяется в свободной форме.

Неорганические вещества, в составе которых есть калий, играют роль «насоса». Благодаря «калиевому насосу» в клетки сквозь мембрану проникают вещества, в которых они остро нуждаются. Калиевые соединения приводят к активизации жизнедеятельности клеток, благодаря им проводятся возбуждения и импульсы. Концентрация ионов калия в клетках весьма высока в отличие от окружающей среды. Ионы калия после гибели живых организмов легко переходят в природное окружение.

Вещества, содержащие фосфор, способствуют формированию мембранных структур и тканей. В их присутствии образуются ферменты и нуклеиновые кислоты. Солями фосфора в той или иной степени насыщены различные слои почвы. Корневые выделения растений, растворяя фосфаты, усваивают их. Вслед за отмиранием организмов остатки фосфатов, подвергаются минерализации, превращаясь в соли.

Неорганические вещества, содержащие кальций, способствуют формированию межклеточного вещества и кристаллов в растительных клетках. Кальций из них проникает в кровь, регулируя процесс ее свертывания. Благодаря ему формируются кости, раковины, известковые скелеты, коралловые полипы у живых организмов. Клетки содержат ионы кальция и кристаллы его солей.

Все химические соединения в клетке можно разделить на органические и неорганические (табл. 1).

Вода (Н 2 О)

Уникальные свойства воды определяются особенностями структуры ее молекул. Молекулы воды связаны водородными связями это обеспечивает свойство: универсальный растворитель . Молекулы воды способны "слипаться" друг с другом - это объясняеткапиллярное свойство (способность подниматься вверх по тонким трубкам, порам (сосуды растений).

Вода входит в состав жидких сред организма : - межклеточное вещество (тканевая жидкость); - кровь (плазма крови); - лимфу(плазма лимфы). Выполняет смазывающую роль: в сердечной сумке- перикардиальная жидкость; в плевральной полости- плевральная жидкость; в суставах (синовиальная жидкость).

Вода имеет две формы: свободная - составляет 95% всей воды и связанная - 4%.

Функции воды:

    Универсальный растворитель

    Транспортная

    Терморегуляторная (поддерживает тепловое равновесие клетки и организма в целом благодаря высокой теплоемкости и теплопроводности)

    Осморегуляторная (влияет на ряд физиологических свойств: упругость, тургор)

    Участвует в химических реакциях (участвует в обменных процессах, необходима для окисления и гидролиза белков, углеводов, жиров, служит источником H + при фотосинтезе).

    Среда, в которой протекают биохимические реакции.

Минеральные соли и кислоты

Большая часть минеральных солей находится в диссоциированном состоянии в виде ионов. Наиболее важные из них катионы - это К + , Na + , Mg 2+ , NH 4 + ; анионы СI - , HPO 4 2- , HCO 3 - , H 2 PO 4 - , NO 3 - . Концентрация ионов в клетке и окружающей ее среде неодинаковая. Например, содержание калия в клетках в десятки раз выше, чем в межклеточном пространстве. Катионов натрия, наоборот, меньше в клетке, чем вне ее. Снижение концентрации ионов К в клетке приводит к уменьшению в ней воды, количество которой возрастает в межклеточном пространстве тем больше, чем выше в межклеточной жидкости концентрация Na + . Уменьшение катионов натрия в межклеточном пространстве приводит к уменьшению в нем содержания воды. Неравномерное распределение ионов калия и натрия с наружной и внутренней стороны мембран нервных и мышечных клеток обеспечивает возможность возникновения и распространения электрических импульсов. (рН=7,2).

Функции минеральных солей:

    Буфферность межклеточной жидкости (кислотно-щелочное равновесие плазмы, за счет поддержания определенной концентрации ионов водорода, обеспечивающей слабощелочную рН=7,2 при участии фосфатной и бикарбонатной систем)

    Постоянное осмотическое давление (7,6 атм.)

    Активация ферментов.

    Источник строительного материала для синтеза органических соединений (например, остаток РО 4 3- образует макроэргические связи АТФ, влияет на физиологическую активность белков и ферментов; Cl - в процессе пищеварения).

    Обеспечивают раздражимость (К + , Na + , Са +2).

    Обеспечивают сцепление клеток в многоклеточном организме (Са 2+).

    Нерастворимые соли Са 3 (РО 4) 2 входит в состав межклеточного вещества костной ткани, раковин моллюсков, обеспечивая защиту и прочность.

Клетка как биологическая система

Основы цитологии

Основные понятия:

клеточная теория, цитология, клетка – единица строения, жизнедеятельности, роста и развития организма, классификация живого, прокариоты и эукариоты, химическая организация клетки, строение про- и эукариотной клеток, взаимосвязь строения и функций органоидов клетки, сравнительная характеристика клеток растений, животных, грибов и бактерий

Началом изучения клетки считают 1665 г.: английский натуралист Роберт Гук, рассматривая в микроскоп срез пробкового дерева, увидел ячейки, которые назвал «клетками». Формирование представлений о клетке происходило в процессе развития биологической науки.

Из истории развития представлений о клетке:

Зарождение и развитие понятия о клетке 1665 г. – Р. Гук ввел понятие «клетка»; 1680 г. – А. Левенгук открыл одноклеточные организмы; 1833 г. – Р. Броун обнаружил внутри клеток растений плотные образования, которые назвал «ядрами»; 1838 г. – М. Шлейден пришел к выводу, что все растительные клетки имеют ядро, Т. Шванн обнаружил ядра в животных клетках.
Возникновение клеточной теории 1838 г. - Т. Шванн и М. Шлейден обобщили знания о клетке, сформулировали основные положения клеточной теории: все растительные и животные организмы состоят из клеток, сходных по строению.
Развитие клеточной теории 1858 г. – Р. Вирхов утверждал, что каждая новая клетка происходит только из клетки в результате ее деления; 1858 г. – К. Бэр установил, что все организмы начинают свое развитие с одной клетки (эмбрион млекопитающего развивается из одной клетки – оплодотворенной яйцеклетки).

Цитология (от греч. kytos) – наука о клетке. Успехи науки цитологии неразрывно связаны с развитием методов исследования: совершенствование светового микроскопа и появлением электронного, применение специальных красителей, позволяющих избирательно выявить клеточные структуры

Основные положения клеточной теории на современном этапе можно сформулировать следующим образом:

Основные положения Характеристика
1. Клетка – основная структурная единица строения, развития и жизнедеятельности Все организмы состоят из клеток. Многоклеточные организмы развиваются из одной оплодотворенной яйцеклетки. Процессы жизнедеятельности организма складываются из жизнедеятельности отдельных клеток
2. Клетки всех организмов сходны по химическому составу, строению, функциям Все клетки содержат органические соединения: углеводы, липиды, белки, нуклеиновые кислоты и неорганические вещества: воду и соли. Все клетки имеют оболочку, цитоплазму, ядро и другие клеточные структуры – органоиды Все клетки имеют способность к росту, размножению, дыханию, выделению, обмену веществ и энергии, обладают раздражимостью
3. Все новые клетки образуются при делении исходных клеток Рост организма происходит в результате деления клеток, новые клетки образуются только при делении исходных, материнских клеток. В многоклеточных организмах клетки специализируются по функциям и образуют ткани

Вывод: все организмы, кроме вирусов, имеют клеточное строение, сходный химический состав клеток, образование клеток происходит сходным образом, что говорит об единстве происхождения всего живого.

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства живой природы. Клеточная теория оказала значительное влияние на развитие биологии как науки, послужила фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она позволила создать основы для понимания жизни, индивидуального развития организмов, для объяснения эволюционной связи между ними. Основные положения клеточной теории сохранили свое значение и сегодня, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клетки. Клетки бывают прокариотические и эукариотические . Организмы, образованные прокариотическими клетками, называются прокариоты , а организмы, образованные эукариотическими клетками, - эукариоты.

Классификация живого

Основанием для такого разделения организмов на царства являются способы питания этих организмов и строение клеток.

Химический состав клетки. В состав организмов входит большая часть химических элементов Периодической системы Д.И. Менделеева.

Макроэлементы – водород, кислород, углерод, азот. К этой группе относят также калий, натрий, кальций, сера, фосфор, магний, железо, хлор (содержание этих элементов в клетке составляет десятые и сотые доли процента). В сумме макроэлементы составляют около 98%.

Микроэлементы – цинк, медь, йод, фтор, молибден, бор, марганец, кобальт (содержание этих элементов в клетке составляет сотые и тысячные доли процента).

Ультрамикроэлементы – золото, платина, ртуть, цезий (содержание этих элементов в клетке не превышает тысячных долей процента).

Микроэлементы и ультрамикроэлементы играют важную роль в организме: железо входит в состав гемоглобина, йод – компонент гормона щитовидной железы, недостаток селена приводит к возникновению раковых заболеваний.

ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ

Химические элементы образуют органические и неорганические вещества:

Органические вещества Неорганические вещества


Углеводы Белки Жиры АТФ Нуклеиновые Минеральные Вода

кислоты вещества

Неорганические вещества клетки

Вода – один из самых основных компонентов живой клетки, составляет в среднем 70-80% массы клетки. В клетке вода находится в свободной (95%) и связанной (5%) формах. Помимо того, что она входит в их состав, для многих организмов это еще и среда обитания.

Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи. Вода как компонент биологических систем выполняет следующие важнейшие функции:

1. Вода - универсальный растворитель для полярных веществ, например солей, сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными.

2. Молекулы воды участвуют во многих химических реакциях, например при гидролизе полимеров.

3. В процессе фотосинтеза вода является донором электронов, источником ионов водорода и свободного кислорода.

4. Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными.

5. Вода обладает высокой удельной теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде.

6. Вода отличается высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме.

7. Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. Благодаря этому свойству воды, проявляющемуся при потоотделении у млекопитающих, тепловой одышке у крокодилов и других животных, транспирации у растений, предотвращается их перегрев.

8. Для воды характерно исключительно высокое поверхностное натяжение. Это свойство имеет большое значение для передвижения растворов по тканям (кровообращение, восходящий и нисходящий токи в растениях). Многим мелким организмам поверхностное натяжение позволяет удерживаться на воде или скользить по ее поверхности.

9. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.

10. У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).

11. Вода - составная часть смазывающих жидкостей (синовиальной - в суставах позвоночных, плевральной - в плевральной полости, перикардиальной - в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез и др.

Свойства, функции и значение воды

Минеральные соли . Молекулы солей в водном растворе распадаются на катионы и анионы. Наибольшее значение имеют катионы (К+, Na+, Са2+, Mg2+, NH4+) и анионы (Сl- , Н2Р04 -, НР042- , НС03 -, NO3 2-, SO4 2-) .Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др. Ряд катионов и анионов необходим для синтеза важных органических веществ (например, фосфолипидов, АТФ, нуклеотидов, гемоглобина, хлорофилла и др.), а также аминокислот, являясь источниками атомов азота и серы. Соляная кислота входит в состав желудочного сока. Соли кальция и фосфора присутствуют в костной ткани животных и человека.

Органические вещества. Основой всех органических соединений является углерод (С), который образует связи с другими атомами и их группами. В результате образуются сложные химические соединения, разные по строению и функциям, - макромолекулы (от греч. macros – большой).

Макромолекулы состоят из повторяющихся низкомолекулярных соединений, - мономеров (от греч. monos – один).

Полимер (от греч. poly – много) макромолекула, образованная мономерами.

В молекулах полимеров мономеры могут быть одинаковые или разные. В зависимости от того, какие мономеры входят в состав полимеров, полимеры делятся на следующие группы:

Полимеры


Регулярные Нерегулярные

А-А-А-А-A-A- - А-В-А-С- В-А-А-D- C- A-

A-S-D-A-S-D-A-S-D-

Полимеры, входящие в состав живых организмов, называются биополимеры, свойства которых зависят от строения их молекул, числа и разнообразия мономеров. Биополимеры универсальны, так как построены по единому плану у всех живых организмов. Разнообразие свойств биополимеров обусловлено различным сочетанием мономеров, образующих различные варианты. Свойства биополимеров проявляются только в живой клетке.

Углеводы, или сахариды , - органические соединения, в состав которых входят углерод, водород и кислород. Название «углеводы» они получили из-за своего химического состава: общая формула большинства из них Сn(H2O)n.

Состав и строение углеводов

Моносахариды – простые сахара, имеющие общую формулу (СН2О)n , где n=3-9. Среди моносахаридов различают триозы (3С), тетраозы (4С), пентозы (5С) – рибоза, дезоксирибоза, гексозы (6С) – глюкоза, галактоза. Моносахариды хорошо растворяются в воде, они сладкие на вкус. Фруктоза входит в состав меда, находится в плодах, зеленых частях растений. Глюкоза находится в плодах, крови, лимфе, является основным источником энергии, входит в состав дисахаридов и полисахаридов.

Дисахариды – вещества, образованные в результате конденсации двух молекул моносахаридов с потерей одной молекулы воды. У растений - это сахароза (С12Н22О11) и мальтоза, у животных – лактоза. Сахароза – основная транспортная форма углеводов в растениях. Лактоза образуется в молочной железе и присутствует в молоке.

глюкоза + глюкоза = мальтоза;
глюкоза + галактоза = лактоза;
глюкоза + фруктоза = саxароза.

По своим свойствам дисахариды близки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды – это высокомолекулярные углеводы, образованные путем соединения большого числа молекул моносахаридов, У растений – крахмал, целлюлоза (клетчатка), формула (С6Н10О5)n ; у животных – гликоген, хитин. Целлюлоза – основной опорный компонент клеточной стенки у растений. Крахмал – основной резервный углевод растений. Гликоген – резервный полисахарид животных (накапливается в печени и мышцах. Хитин входит в состав покровов членистоногих, обеспечивает прочность покровных структур грибов.

Локализация в клетке и организме: клеточная стенка, клеточные включения, клеточный сок растений, покровы членистоногих.

Функции углеводов :

1) Энергетическая. Углеводы – это основной источник энергии для организмов. В процессе окисления 1 г углеводов освобождается 17,6 кДж.

2) Структурная. Клеточные стенки растений построены из целлюлозы. Покровы тела членистоногих, клеточные стенки грибов состоят из хитина. Углеводы входят в состав органоидов, молекул ДНК и РНК.

3) Запасающая. Эту функцию выполняют у растений крахмал, у животных гликоген. Они обладают способностью накапливаться в клетках и расходоваться по мере возникновения потребности в энергии.

4) Защитная. Железы выделяют секреты, которые содержат углеводы. Секреты защищают стенки полых органов (желудок, кишечник) от механических повреждений, проникновения болезнетворных бактерий.

Липиды - это жироподобные вещества, большинство из которых состоит из жирных кислот и трехатомного спирта; это сложные эфиры высших жирных кислот и трехатомного спирта глицерина.

Жиры – наиболее простые и широко распространенные липиды. Жидкие жиры называются маслами. У животных масла встречаются в молоке, но чаще встречаются у растений в семенах, плодах.

Состав и строение липидов

Место синтеза в клетке: на мембранах гладкой эндоплазматической сети.

Локализация в клетке и организме: клеточная мембрана, клеточные включения, подкожная жировая клетчатка и сальники.

Функции липидов :

1) Энергетическая. Липиды – «энергетическое депо». При окислении 1 г липидов до СО2 и Н2О освобождается 38,9 кДж, что в два раза больше по сравнению с углеводами и белками.

2) Структурная. Липиды принимают участие в построении мембран клеток и образовании важных биологических соединений, например, гормонов, витаминов.

3) Запасающая. В растениях чаще накапливаются масла, а не жиры. Семена сои и подсолнечника богаты маслами.

4) Защитная и теплоизоляционная. Жиры плохо проводят тепло. Они откладываются под кожей животных, у некоторых достигают такие скопления толщины до 1 м, например, у китов. Жировой слой защищает животных от переохлаждения. Жировая ткань выполняет функцию терморегулятора. У китов, кроме того, он играет еще и другую роль - способствует плавучести. Благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата.

5) Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений. Такой слой защищает листья во время сильных дождей от намокания.

6) Регуляторная. Многие биологически активные вещества (половые гормоны - тестостерон у

мужчин и прогестерон у женщин), витамины (A, D, E) являются соединениями липидной

7) Источник метаболической воды. Одним из продуктов окисления жира является вода, которая

очень важна для некоторых обитателей животного мира пустынь, например, для верблюдов.

Жир, который запасают эти животные в горбах, является источником воды. Окисление 100 г

жира дает примерно 105 г воды. Необходимую для жизнедеятельности воду медведи, сурки и

другие животные, впадающие в спячку, получают в результате окисления жира.

8) В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

9) Воск используется пчелами в строительстве сот.

Липиды могут образовывать комплексы с другими биологическими молекулами - белками и сахарами.

Белки, или протеины (от греч. protos – первый) – самые многочисленные, разнообразные и имеющие первостепенное значение органические соединения. Белки – макромолекулы, так как имеют большие размеры.

Химический состав молекул белка: углерод, кислород, водород, азот, сера, также могут быть фосфор, железо, цинк, медь.

Белки - это полимеры, состоящие из повторяющихся низкомолекулярных мономеров. Аминокислоты – мономеры белковых молекул. Известно около 200 аминокислот, встречающихся в живых организмах, но только 20 из них входят в состав белков. Это так называемые основные, или белокобразующие аминокислоты. 20 аминокислот обеспечивают многообразие белков. У растений все необходимые аминокислоты синтезируются из первичных продуктов фотосинтеза. Человек и животные не способны синтезировать ряд аминокислот и должны получать их в готовом виде вместе с пищей. Такие аминокислоты называются незаменимыми. К ним относятся лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин, аргинин и гистидин (всего 10).

Строение аминокислоты:

Между аминогруппой одной аминокислоты и карбоксильной группой другой аминокислоты образуется ковалентная связь, которая называется пептидная связь, а молекула белка – полипептид .

В растворе аминокислоты могут выступать в роли как кислот, так и оснований, т. е. они являются амфотерными соединениями. Карбоксильная группа -СООН способна отдавать протон, функционируя как кислота, а аминная - NH2 - принимать протон, проявляя таким образом свойства основания.

Структура белков. Каждому белку в определенной среде свойственна особая пространственная структура. При характеристике пространственной (трехмерной) структуры выделяют четыре уровня организации молекул белков.

Уровни структурной организации белка: а - первичная структура - аминокислотная последовательность белка; б - вторичная структура - полипептидная цепь закручена в виде спирали; в - третичная структура белка; г - четвертичная структура гемоглобина.

Место синтеза белков в клетке: на рибосомах.

Локализация белков в клетке и организме: присутствуют во всех органоидах и цитоплазматическом матриксе.

Пространственная структура белка:

Первичная структура белка – последовательность аминокислот, соединенных друг с другом пептидными связями в полипептидную цепь. От первичной структуры зависят все свойства и функции белков. Замена одной-единственной аминокислоты в составе молекул белка или нарушение порядка в их расположении обычно влечет за собой изменение функции белка.

Вторичная структура белковой молекулы достигается ее спирализацией: полипептидная цепь, состоящая из последовательно соединенных аминокислот, закручивается в спираль, образуются непрочные водородные связи между – СО- и – NН- группами.

При образовании третичной структуры спирализованная белковая молекула еще многократно сворачивается, образуя шарик – глобулу. Прочность третичной структуры определяется различными связями, например, дисульфидными связями (-S-S-), ионные, водородные, гидрофобное взаимодействие.

Четвертичная структура - это соединение, состоящее из нескольких молекул белка, имеющих третичную структуру. Химические связи - ионные, водородные, гидрофобное взаимодействие.

И так, первичная структура – это линейная структура, в виде полипептидной цепи; вторичная – спиральная, за счет водородных связей; третичная – глобулярная; четвертичная – объединение нескольких молекул белка с третичной структурой.

Свойство белка – денатурация - нарушение природной структуры белка, которая бывает обратимая, если не разрушена первичная структура, и необратимая, если первичная структура разрушена.

Воздействие факторов среды

(температура, химические вещества, излучение и др.)


Денатурация белка (разрушение структур)

Ренатурация – полное восстановление структуры белка.

Под влиянием различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, щелочами, высокой температурой, облучением, высоким давлением и т. д.) происходит изменение вторичной, третичной и четвертичной структур белка вследствие разрыва водородных и ионных связей. Процесс нарушения естественной структуры белка называется денатурацией. При этом наблюдается уменьшение растворимости белка, изменение формы и размеров молекул, потеря ферментативной активности и т. д. Процесс денатурации может быть полным или частичным. В некоторых случаях переход к нормальным условиям среды сопровождается самопроизвольным восстановлением естественной структуры белка. Такой процесс называется ренатурацией.

Простые и сложные белки. По химическому составу выделяют белки простые и сложные. К простым относятся белки, состоящие только из аминокислот, а к сложный - белки, содержащие белковую часть и небелковую - ионы металлов, остаток фосфорной кислоты, углеводы, липиды и др.

Функции белков :

1) Ферментативная , или каталитическая. Катализаторы – это вещества, ускоряющие химические реакции. Ферменты – это катализаторы биохимических реакций. Ферменты ускоряют реакции в организме в десятки и сотни тысяч раз. Они высокоспецифичны, так как каждый фермент катализирует только определенную реакцию.

Ферменты = Биокатализаторы (ускорители химических реакций, протекающих в клетках)

2) Структурная. Белки входят в состав всех мембран и органоидов клетки (например, в соединении с РНК белок образует рибосомы).

3) Энергетическая . При распаде 1 г белков до конечных продуктов (СО2, Н2О и азотсодержащие вещества) выделяется 17,6 кДж.

4) Запасающая. Эту функцию выполняют белки – источники питания (белок яйца – альбумин,

белок молока – казеин, клетки эндосперма и яйцеклетки).

5) Защитная. Все живые клетки и организмы имеют защитные системы. У человека и животных - это иммунная защита. В лимфоцитах образуются антитела – защитные белки, которые обезвреживают чужеродные тела. Другой пример защитной функции – свертывание белка фибриногена в крови, что приводит к образованию сгустка крови – тромба, который закупоривает сосуд, кровотечение прекращается. Механическую защиту обеспечивают роговые образования – волосы, рога, копыта. В состав этих образований входят белки. Растения тоже образуют защитные белки, например, алкалоиды, благодаря которым покровы растений становятся более прочными и устойчивыми.

6) Регуляторная. Многие белки – гормоны , регулирующие физиологические процессы (белковую природу имеют инсулин и глюкагон). Клетки поджелудочной железы вырабатывают гормон инсулин, регулирующий содержание глюкозы в крови.

Поджелудочная железа

Гормон инсулин

Глюкоза (в крови) à Гликоген (в клетках печени)

7) Транспортная. Функция транспортных белков заключается в присоединении химических элементов или биологически активных веществ и переносе их к тканям и органам.

Гемоглобин (находится в эритроцитах)


Гемоглобин + кислород Гемоглобин + углекислый газ

8) Двигательная. Сократительные белки участвуют во всех видах движения, к которым способны клетки и организмы. Примеры: движение жгутиков и ресничек у простейших одноклеточных животных, сокращение мышц у многоклеточных животных (белки миозин и актин обеспечивают сокращение мышечных клеток), движение листьев у растений.

9) Сигнальная. Белки, встроенные в мембрану клетки, осуществляют прием сигналов из

внешней среды и передачу информации в клетку. Такие белковые молекулы способны

изменять свою третичную структуру в ответ на действия факторов внешней среды.

10) Токсическая (токсины, обеспечивающие защиту от врагов и умерщвление добычи).

Функции белка Характеристика
1. Структурная Белки входят в состав клеточных мембран и органоидов
2. Энергетическая При окислении 1 г белков выделяется 17,6 кДж
3. Запасающая Белки – запасной питательный и энергетический материал
4. Каталитическая, ферментативная Белки – ферменты, ускоряющие химические реакции
5. Регуляторная Многие белки – гормоны, регулирующие физиологические процессы
6. Транспортная Перенос различных веществ (гемоглобин + кислород)
7. Двигательная Сократительные белки обеспечивают движение (хромосомы к полюсам клетки)
8. Защитная Защищают организм от чужеродных тел
9. Сигнальная Осуществляют прием сигналов из внешней среды и передачу информации в клетку
10. Токсическая Токсины обеспечивают защиту от врагов и умерщвление добычи

Белки используются как источник энергии редко, поскольку они выполняют ряд других важных функций. Белки обычно используются, когда истощаются такие источники, как углеводы и жиры. Углеводы и жиры откладываются в запас; когда в пище не хватает какого-либо органического соединения, возможно превращение в организме одних органических соединений в другие: белков в жиры и углеводы, углеводы и жиры друг в друга. Но углеводы и жиры не могут превращаться в белки.