Живые клетки проводящей ткани. Строение растительной клетки

В биологии тканью называют группу клеток, имеющих сходное строение и происхождение, а также выполняющих одинаковые функции . У растений наиболее разнообразные и сложно устроенные ткани развились в процессе эволюции у покрытосеменных (цветковых). Органы растений обычно образованы несколькими тканями. Можно выделить шесть типов тканей растений: образовательную, основную, проводящую, механическую, покровную, секреторную. Каждая ткань включает подтипы. Между тканями, а также внутри них бывают межклетники - промежутки между клетками.

Образовательная ткань

Благодаря делению клеток образовательной ткани растение увеличивается в длину и толщину. При этом часть клеток образовательной ткани дифференцируется в клетки других тканей.

Клетки образовательной ткани достаточно мелкие, плотно прилегают друг к другу, имеют крупное ядро и тонкую оболочку.

Образовательная ткань в растениях находится в конусах нарастания корня (кончик корня) и стебля (верхушка стебля), бывает в основаниях междоузлий, также образовательная ткань составляет камбий (который обеспечивает рост стебля в толщину).

Клетки конуса нарастания корня. На фото виден процесс деления клеток (расхождение хромосом, растворение ядра).

Паренхима, или основная ткань

К паренхиме относят несколько разновидностей тканей. Различают ассимиляционную (фотосинтезирующую), запасающую, водоносную и воздухоносную основную ткань.

Фотосинтезирующая ткань состоит из клеток, содержащих хлорофилл, т. е. зеленых клеток. Эти клетки имеют тонкие стенки, содержат большое количество хлоропластов. Основная их функция - фотосинтез. Ассимиляционная ткань составляет мякоть листьев, входит в состав коры молодых стеблей деревьев и стебли трав.

В клетках запасающей ткани накапливаются запасы питательных веществ. Эта ткань составляет эндосперм семян, входит в состав клубней, луковиц и др. Сердцевина стебля, внутренние клетки коры стебля и корня, сочный околоплодник также обычно состоят из запасающей паренхимы.

Водоносная паренхима свойственна лишь ряду растений, обычно засушливых мест обитания. В клетках этой ткани накапливается вода. Водоносная ткань может быть как в листьях (алоэ), так и в стебле (кактусы).

Воздухоносная ткань свойственна водным и болотным растениям. Ее особенностью является наличие большого количества межклетников, содержащих воздух. Это облегчает газообмен растению, когда он затруднен.

Проводящая ткань

Общей функцией различных проводящих тканей является проведение веществ от одних органов растения к другим. В стволах древесных растений клетки проводящей ткани расположены в древесине и лубе. Причем в древесине расположены сосуды (трахеи) и трахеиды , по которым перемещается водный раствор от корней, а в лубе - ситовидные трубки , по которым перемещаются органические вещества от фотосинтезирующих листьев.

Сосуды и трахеиды - это мертвые клетки. По сосудам водный раствор поднимается быстрее, чем по трахеидам.

Ситовидные трубки являются живыми, но безъядерными клетками.

Покровная ткань

К покровной ткани относится кожица (эпидермис), пробка, корка. Кожица покрывает листья и зеленые стебли, это живые клетки. Пробка состоит из мертвых клеток, пропитанных жироподобным веществом, не пропускающим воду и воздух.

Главные функции любой покровной ткани - это защита внутренних клеток растения от механического повреждения, высыхания, проникновения микроорганизмов, перепадов температуры.

Пробка является вторичной покровной тканью, так как возникает на месте кожицы у стеблей и корней многолетних растений.

Корка состоит из пробки и отмерших слоев основной ткани.

Механическая ткань

Для клеток механической ткани характерны сильно утолщенные одревесневшие оболочки. Функции механической ткани - это придание телу и органам растений прочности и упругости.

В стеблях покрытосеменных растений механическая ткань может располагаться одним целостным слоем или же отдельными тяжами, отстоящими друг от друга.

В листьях волокна механической ткани обычно располагаются рядом с волокнами проводящей ткани. Вместе они образуют жилки листа.

Секреторная, или выделительная ткань растений

Клетки секреторной ткани выделяют различные вещества, и поэтому функции у этой ткани разные. Выделительные клетки у растений выстилают смоляные и эфиромасличные ходы, образуют своеобразные железы и железистые волоски. К секреторной ткани принадлежат нектарники цветков.

Смолы выполняют защитную функцию при повреждении стебля растения.

Нектар привлекает насекомых-опылителей.

Бывают секреторные клетки, выводящие продукты обмена, например, соли щавелевой кислоты.

В процессе эволюции является одной из причин, которые сделали возможным выход растений на сушу. В нашей статье мы рассмотрим особенности строения и функционирования ее элементов - ситовидных трубок и сосудов.

Особенности проводящей ткани

Когда на планете произошли серьезные изменения климатических условий, растениям пришлось приспосабливаться к ним. До этого все они обитали исключительно в воде. В наземно-воздушной среде стала необходимой добыча воды из почвы и ее транспортировка ко всем органам растения.

Различают два вида проводящей ткани, элементами которой являются сосуды и ситовидные трубки:

  1. Луб, или флоэма - расположена ближе к поверхности стебля. По ней органические вещества, образованные в листе во время фотосинтеза, передвигаются по направлению к корню.
  2. Второй тип проводящей ткани называется древесина, или ксилема. Она обеспечивает восходящий ток: от корня к листьям.

Ситовидные трубки растений

Это проводящие клетки луба. Между собой они разделены многочисленными перегородками. Внешне их строение напоминает сито. Отсюда и происходит название. Ситовидные трубки растений живые. Это объясняется слабым давлением нисходящего тока.

Их поперечные стенки пронизаны густой сетью отверстий. А клетки содержат много сквозных отверстий. Все они являются прокариотическими. Это означает, что в них нет оформленного ядра.

Живыми элементы цитоплазмы ситовидных трубок остаются только на определенное время. Продолжительность этого периода варьирует в широких пределах - от 2 до 15 лет. Данный показатель зависит от вида растения и условий его произрастания. Ситовидные трубки транспортируют воду и органические вещества, синтезированные в процессе фотосинтеза от листьев к корню.

Сосуды

В отличие от ситовидных трубок, эти элементы проводящей ткани представляют собой мертвые клетки. Визуально они напоминают трубочки. Сосуды имеют плотные оболочки. С внутренней стороны они образуют утолщения, которые имеют вид колец или спиралей.

Благодаря такому строению сосуды способны выполнять свою функцию. Она заключается в передвижении почвенных растворов минеральных веществ от корня к листьям.

Механизм почвенного питания

Таким образом, в растении одновременно осуществляется передвижение веществ в противоположных направлениях. В ботанике этот процесс называют восходящим и нисходящим током.

Но какие силы заставляют воду из почвы двигаться вверх? Оказывается, что это происходит под влиянием корневого давления и транспирации - испарения воды с поверхности листьев.

Для растений этот процесс является жизненно необходимым. Дело в том, что только в почве находятся минералы, без которых развитие тканей и органов будет невозможным. Так, азот необходим для развития корневой системы. В воздухе этого элемента предостаточно - 75 %. Но растения не способны фиксировать атмосферный азот, поэтому минеральное питание так важно для них.

Поднимаясь, молекулы воды плотно сцепляются между собой и стенками сосудов. При этом возникают силы, способные поднять воду на приличную высоту - до 140 м. Такое давление заставляет почвенные растворы через корневые волоски проникать в кору, и далее к сосудам ксилемы. По ним вода поднимается к стеблю. Далее, под действием транспирации, вода поступает в листья.

В жилках рядом с сосудами находятся и ситовидные трубки. Эти элементы осуществляют нисходящий ток. Под воздействием солнечного света в хлоропластах листа синтезируется полисахарид глюкоза. Это органическое вещество растение расходует на осуществление роста и процессов жизнедеятельности.

Итак, проводящая ткань растения обеспечивает передвижение водных растворов органических и минеральных веществ по растению. Ее структурными элементами являются сосуды и ситовидные трубки.

Рис. Клеточное строение однолетнего стебля липы. Продольный и поперечный срезы: 1 - система покровных тканей (снаружи внутрь; один слой эпидермиса, пробка, первичная кора); 2-5 - луб: 2 - лубяные волокна, 3 - ситовидные трубки, 4 - клетки-спутники, 5 - клетки лубяной паренхимы; 6 - клетки камбия, в крайних слоях растянутые, дифференцирующиеся; 7-9 клеточные элементы древесины: 7 - клетки сосудов, 8 - древесные волокна, 9 - клетки древесной паренхимы (7 , 8 и 9 показаны также крупно); 10 - клетки сердцевины.

Вода и минеральные вещества, поступающие через корень, должны достигать всех частей растения, в то же время вещества, образующиеся в листьях в процессе фотосинтеза, также предназначены для всех клеток. Таким образом, в теле растения должна существовать специальная система, обеспечивающая транспорт и перераспределение всех веществ. Эту функцию у растений выполняют проводящие ткани. Существует два типа проводящих тканей: ксилема (древесина) и флоэма (луб). По ксилеме осуществляется восходящий ток: передвижение воды с минеральными солями из корня во все органы растения. По флоэме идет нисходящий ток: транспорт органических веществ, поступающих из листьев. Проводящие ткани являются сложными тканями, так как состоят из нескольких типов по-разному дифференцированных клеток.

Ксилема (древесина). Ксилема состоит из проводящих элементов: сосудов, или трахей, и трахеид, а также из клеток, выполняющих механическую и запасающую функцию.

Трахеиды. Это мертвые вытянутые клетки с косо срезанными заостренными концами (рис.12).

Их одревесневшие стенки сильно утолщены. Обычно длина трахеид составляет 1-4 мм. Располагаясь в цепочку друг за другом, трахеиды образуют водопроводящую систему у папоротникообразных и голосеменных растений. Связь между соседними трахеидами осуществляется через поры. Путем фильтрации сквозь мембрану поры осуществляется и верти­кальный, и горизонтальный транспорт воды с растворенными минеральными веществами. Движение воды по трахеидам идет с медленной скоростью.

Сосуды (трахеи). Сосуды образуют наиболее совершенную проводящую систему, характерную для покрытосеменных растений. Они представляют собой длинную полую трубку, состоящую из цепочки мертвых клеток - члеников сосуда, в поперечных стенках которых находятся крупные отверстия - перфорации. Благодаря этим отверстиям осуществляется быстрый ток воды. Сосуды редко бывают одиночными, обычно они располагаются группами. Диаметр сосуда - 0,1 - 0,2 мм. На ранней стадии развития из прокамбия ксилемы на внутренних стенках сосудов образуются целлюлозные, впоследствии одревесневающие, утолщения. Эти утолщения препятствуют сминанию сосудов под давлением соседних растущих клеток. Сначала образуются кольчатые и спиральные утолщения, которые не препятствуют дальнейшему удлинению клеток. Позже возникают более широкие сосуды с лестничными утолщениями, а затем пористые сосуды, для которых характерна наибольшая площадь утолщения (рис.13).

Через неутолщенные участки сосудов (поры) осуществляется горизонтальный транспорт воды в соседние сосуды и клетки паренхимы. Появление сосудов в процессе эволюции обеспечило покрытосеменным растениям высокую приспособленность к жизни на суше и, как результат, их господство в современном растительном покрове Земли.

Другие элементы ксилемы. В состав ксилемы кроме проводящих элементов входят также древесинная паренхима и механические элементы - древесинные волокна, или либриформ. Волокна, так же как и сосуды, возникли в процессе эволюции из трахеид. Однако в отличие от сосудов у волокон уменьшилось число пор и сформировалась еще более утолщенная вторичная оболочка.

Флоэма (луб). Флоэма осуществляет нисходящий ток органических веществ - продуктов фотосинтеза. В состав флоэмы входят ситовидные трубки, клетки-спутницы, механические (лубяные) волокна и лубяная паренхима.

Ситовидные трубки. В отличие от проводящих элементов ксилемы, ситовидные трубки представляют собой цепочку живых клеток (рис.14).

Поперечные стенки двух смежных клеток, входящих в состав ситовидной трубки, пронизаны большим числом сквозных отверстий, образующих структуру, напоминающую сито. С этим и связано название ситовидных трубок. Стенки, несущие эти отверстия, называют ситовидными пластинками. Через эти отверстия и осуществляется транспорт органических веществ из одного членика в другой.

Членики ситовидной трубки соединены своеобразными порами с клетками-спутницами (см. ниже). С паренхимными клетками трубки сообщаются через простые поры. В зрелых ситовидных клетках отсутствуют ядро, рибосомы и комплекс Гольджи, а их функциональная активность и жизнедеятельность поддерживается клетками-спутницами.

Клетки-спутницы (сопровождающие клетки). Располагаются вдоль продольных стенок членика ситовидной трубки. Клетки-спутницы и членики ситовидных трубок образуются из общих материнских клеток. Материнская клетка делится продольной перегородкой, и из двух образовавшихся клеток одна превращается в членик ситовидной трубки, а из другой развиваются одна или несколько клеток-спутниц. Клетки-спутницы имеют ядро, цитоплазму с многочисленными митохондриями, в них происходит активный обмен веществ, что связано с их функцией: обеспечивать жизнедеятельность безъядерных ситовидных клеток.

Другие элементы флоэмы. В состав флоэмы наряду с проводящими элементами входят механические лубяные (флоэмные) волокна и лубяная (флоэмная) паренхима.

Проводящие пучки. В растении проводящие ткани (ксилема и флоэма) образуют особые структуры - проводящие пучки. Если пучки частично или полностью окружены тяжами механической ткани, их называют сосудисто-волокнистыми пучками. Эти пучки пронизывают все тело растения, образуя единую проводящую систему.

Первоначально проводящие ткани образуются из клеток первичной меристемы - прокамбия. Если при образовании пучка прокамбий полностью расходуется на формирование первичных проводящих тканей, то такой пучок называют закрытым (рис.15).

Он не способен к дальнейшему (вторичному) утолщению, потому что в нем нет камбиальных клеток. Такие пучки характерны для однодольных растений.

У двудольных и голосеменных растений между первичными ксилемой и флоэмой остается часть прокамбия, которая в дальнейшем становится пучковым камбием. Его клетки способны делиться, образуя новые проводящие и механические элементы, что обеспечивает вторичное утолщение пучка и, как следствие, рост стебля в толщину. Проводящий пучок, содержащий камбий, называют открытым (см. рис.15).

В зависимости от взаимного расположения ксилемы и флоэмы различают несколько типов проводящих пучков (рис.16)

Коллатеральные пучки. Ксилема и флоэма примыкают друг к другу бок о бок. Такие пучки характерны для стеблей и листьев большинства современных семенных растений. Обыч­но в таких пучках ксилема занимает положение ближе к центру осевого органа, а флоэма обращена к периферии.

Биколлатералъные пучки. К ксилеме примыкают бок о бок два тяжа флоэмы: один - с внутренней стороны, другой - с периферии. Периферический тяж флоэмы преимущественно состоит из вторичной флоэмы, внутренний - из первичной, так как развивается из прокамбия.

Концентрические пучки. Одна проводящая ткань окружает другую проводящую ткань: ксилема - флоэму или флоэма - ксилему.

Радиальные пучки. Характерны для корней растений. Ксилема располагается по радиусам органа, между которыми находятся тяжи флоэмы.


Значение и разнообразие проводящих тканей

Проводящие ткани являются важнейшей составной частью большинства высших растений. Они являются обязательным структурным компонентом вегетативных и репродуктивных органов споровых и семенных растений. Проводящие ткани в совокупности с клеточными стенками и межклетниками, некоторыми клетками основной паренхимы и специализированными передаточными клетками образуют проводящую систему, которая обеспечивает дальний и радиальный транспорт веществ. Благодаря особой конструкции клеток и их расположению в теле растений проводящая система выполняет многочисленные, но взаимосвязанные функции:

1) передвижение воды и минеральных веществ, поглощенных корнями из почвы, а также органических веществ, образуемых в корнях, в стебель, листья, репродуктивные органы;

2) передвижение продуктов фотосинтеза из зелёных частей растения в места их использования и запасания: в корни, стебли, плоды и семена;

3) передвижение фитогормонов по растению, что создает определённый их баланс, который определяет темпы роста и развития вегетативных и репродуктивных органов растений;

4) радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других тканей, например, в ассимилирующие клетки мезофилла листа и делящиеся клетки меристем. В нем могут также принимать участие паренхимные клетки сердцевинных лучей древесины и коры. Большое значение в радиальном транспорте имеют передаточные клетки с многочисленными выпячиваниями клеточной оболочки, находящиеся между проводящими и паренхимными тканями;

5) проводящие ткани повышают устойчивость органов растений к деформирующим нагрузкам;

6) проводящие ткани образуют непрерывную разветвленную систему, связывающую органы растений в единое целое;

Возникновение проводящих тканей является результатом эволюционных структурных преобразований, связанных с выходом растений на сушу и разделением их воздушного и почвенного питания. Наиболее древние проводящие ткани – трахеиды обнаружены у ископаемых риниофитов. Наивысшего развития они достигли у современных покрытосеменных.

В процессе индивидуального развития первичные проводящие ткани образуются из прокамбия в точках роста зародыша семени и почек возобновления. Вторичные проводящие ткани, характерные для двудольных покрытосеменных, порождаются камбием.

В зависимости от выполняемых функций проводящие ткани подразделяются на ткани восходящего тока и ткани нисходящего тока. Основным назначением тканей восходящего тока является транспорт воды и растворенных в ней минеральных веществ от корня к выше расположенным надземным органам. Кроме того, по ним перемещаются органические вещества, образуемые в корне и стебле, например, органические кислоты, углеводы и фитогормоны. Однако термин «восходящий ток» не следует воспринимать однозначно как передвижение снизу – вверх. Ткани восходящего тока обеспечивают поток веществ по направлению от зоны всасывания к апексу побега. При этом транспортируемые вещества используются как самим корнем, так и стеблем, ветвями, листьями, репродуктивными органами, независимо от того, выше или ниже уровня корней они находятся. Например, у картофеля вода и элементы минерального питания поступают по тканям восходящего тока в столоны и клубни, образуемые в почве, а также в надземные органы.

Ткани нисходящего тока обеспечивают отток продуктов фотосинтеза в растущие части растений и в запасающие органы. При этом пространственное положение фотосинтезирующих органов не имеет никакого значения. Например, у пшеницы органические вещества поступают в развивающиеся зерновки из листьев разных ярусов. Поэтому к названиям «восходящие» и «нисходящие» ткани следует относиться не более как к сложившейся традиции.

Проводящие ткани восходящего тока

К тканям восходящего тока относятся трахеиды и сосуды (трахеи), которые располагаются в древесинной (ксилемной) части органов растений. В этих тканях передвижение воды и растворенных в ней веществ происходит пассивно под действием корневого давления и испарением воды с поверхности растения.

Трахеиды имеют более древнее происхождение. Они встречаются у высших споровых растений, голосеменных и реже – у покрытосеменных. У покрытосеменных они типичны для мельчайших разветвлений жилок листа. Клетки трахеид мертвые. Они имеют вытянутую, часто веретеновидную форму. Их длина составляет 1 – 4 мм. Однако у голосеменных, например у араукарии, она достигает 10 мм. Стенки клеток толстые, целлюлозные, часто пропитываются лигнином. В клеточных оболочках имеются многочисленные окаймленные поры.

Сосуды сформировались на более поздних этапах эволюции. Они характерны для покрытосеменных, хотя встречаются и у некоторых современных представителей отделов Плауны (род Селлагинелла), Хвощи, Папоротники и Голосеменные (род Гнетум).

Сосуды состоят из удлиненных мертвых клеток, расположенных одна над другой и называемых члениками сосуда. В торцевых стенках члеников сосуда имеются крупные сквозные отверстия – перфорации, через которые осуществляется дальний транспорт веществ. Перфорации возникли в ходе эволюции из окаймленных пор трахеид. В составе сосудов они бывают лестничными и простыми. Многочисленные лестничные перфорации образуются на торцевых стенках члеников сосуда при их косом заложении. Отверстия таких перфораций имеют удлиненную форму, а разделяющие их перегородки располагаются параллельно друг другу, напоминая ступеньки лестницы. Сосуды с лестничной перфорацией характерны для растений семейств Лютиковые, Лимонниковые, Березовые, Пальмовые, Частуховые.

Простые перфорации известны у эволюционно более молодых семейств, таких как Паслёновые, Тыквенные, Астровые, Мятликовые. Они представляют собой одно крупное отверстие в торцевой стенке членика, расположенной перпендикулярно оси сосуда. В ряде семейств, например, у Магнолиевых, Розовых, Ирисовых, Астровых, в сосудах встречаются как простые, так и лестничные перфорации.

Боковые стенки имеют неравномерные целлюлозные утолщения, которые предохраняют сосуды от избыточного давления, создаваемого рядом расположенными живыми клетками других тканей. В боковых стенках могут находиться многочисленные поры, обеспечивающие выход воды за пределы сосуда.

В зависимости от характера утолщений, типов и характера расположения пор сосуды подразделяются на кольчатые, спиральные, биспиральные, сетчатые, лестничные и точечно-поровые. У кольчатых и спиральных сосудов целлюлозные утолщения располагаются в виде колец или спиралей. Через неутолщенные участки осуществляется диффузия транспортируемых растворов в окружающие ткани. Диаметр этих сосудов сравнительно невелик. У сетчатых, лестничных и точечно-поровых сосудов вся боковая стенка, за исключением мест расположения простых пор, утолщена и часто пропитана лигнином. Поэтому радиальный транспорт веществ у них осуществляется через многочисленные удлиненные и точечные поры.

Сосуды имеют ограниченный срок деятельности. Они могут разрушаться в результате закупорки тиллами – выростами соседних паренхимных клеток, а также под действием центростремительных сил давления новых клеток древесины, образуемых камбием. В ходе эволюции сосуды подвергаются изменениям. Членики сосудов становятся короче и толще, косые поперечные перегородки сменяются прямыми, а лестничные перфорации – простыми.

Проводящие ткани нисходящего тока

К тканям нисходящего тока относятся ситовидные клетки и ситовидные трубки с клетками-спутницами. Ситовидные клетки имеют более древнее происхождение. Они встречаются у высших споровых растений и голосеменных. Это живые, удлиненные клетки с заостренными концами. В зрелом состоянии они содержат ядра в составе протопласта. В их боковых стенках, в местах соприкосновения смежных клеток, имеются мелкие сквозные перфорации, которые собраны группами и образуют ситовидные поля, через которые осуществляется передвижение веществ.

Ситовидные трубки состоят из вертикального ряда удлиненных клеток, разделенных между собой поперечными стенками и называемыми ситовидными пластинками, в которых расположены ситовидные поля. Если ситовидная пластинка обладает одним ситовидным полем, она считается простой, а если несколькими – то сложной. Ситовидные поля образуются многочисленными сквозными отверстиями – ситовидными перфорациями небольшого диаметра. Через эти перфорации из одной клетки в другую проходят плазмодесмы. На стенках перфораций размещается полисахарид каллоза, которая уменьшает просвет перфораций. По мере старения ситовидной трубки каллоза полностью закупоривает перфорации и трубка прекращает работу.

При формировании ситовидной трубки в образующих их клетках синтезируется специальный флоэмный белок (Ф-белок) и развивается крупная вакуоль. Она оттесняет цитоплазму и ядро к стенке клетки. Затем мембрана вакуоли разрушается и внутреннее пространство клетки заполняется смесью цитоплазмы и клеточного сока. Тельца Ф-белка теряют отчетливые очертания, сливаются, образуя тяжи около ситовидных пластинок. Их фибриллы проходят через перфорации из одного членика ситовидной трубки в другой. К членикам ситовидной трубки плотно прилегают одна или две клетки-спутницы, которые имеют удлиненную форму, тонкие стенки и живую цитоплазму с ядром и многочисленными митохондриями. В митохондриях синтезируется АТФ, необходимая для транспорта веществ по ситовидным трубкам. В стенках клеток-спутниц имеется большое количество пор с плазмадесмами, которое почти в 10 раз превышает их количество в других клетках мезофилла листа. Поверхность протопласта этих клеток значительно увеличена за счет многочисленных складок, образуемых плазмалеммой.

Скорость передвижения ассимилятов по ситовидным трубкам значительно превышает скорость свободной диффузии веществ и достигает 50 – 150 см/час, что указывает на активный транспорт веществ с использованием энергии АТФ.

Продолжительность работы ситовидных трубок у многолетних двудольных составляет 1 – 2 года. На смену им камбий постоянно образует новые проводящие элементы. У однодольных, лишенных камбия, ситовидные трубки существуют гораздо дольше.

Проводящие пучки

Проводящие ткани располагаются в органах растений в виде продольных тяжей, образуя проводящие пучки. Различают четыре типа проводящих пучков: простые, общие, сложные и сосудисто-волокнистые.

Простые пучки состоят из одного типа проводящих тканей. Например, в краевых частях листовых пластинок многих растений встречаются небольшие по диаметру пучки из сосудов и трахеид, а в цветоносных побегах у лилейных – из одних лишь ситовидных трубок.

Общие пучки образуются трахеидами, сосудами и ситовидными трубками. Иногда этот термин используется для обозначения пучков метамера, которые проходят в междоузлии и являются листовыми следами. В состав сложных пучков входят проводящие и паренхимные ткани. Наиболее совершенными, многообразными по строению и местоположению являются сосудисто-волокнистые пучки.

Сосудисто-волокнистые пучки характерны для многих высших споровых растений и голосеменных. Однако они наиболее типичны для покрытосеменных. В таких пучках выделяются функционально разные части – флоэма и ксилема. Флоэма обеспечивает отток ассимилятов из листа и передвижение их в места использования или запасания. По ксилеме вода и растворенные в ней вещества передвигаются из корневой системы в лист и другие органы. Объем ксилемной части в несколько раз превосходит объем флоэмной, поскольку объем поступающей в растение воды превышает объем образуемых ассимилятов, так как значительная часть воды испаряется растением.

Разнообразие сосудисто-волокнистых пучков определяется их происхождением, гистологическим составом и местонахождением в растении. Если пучки образуются из прокамбия и завершают своё развитие по мере использования запаса клеток образовательной ткани, как у однодольных, они называются закрытыми для роста. В отличие от них, у двудольных открытые пучки не ограничены в росте, поскольку они формируются камбием и увеличиваются в диаметре на протяжении всей жизни растения. В состав сосудисто-волокнистых пучков кроме проводящих могут входить основные и механические ткани. Например, у двудольных флоэма образуется ситовидными трубками (проводящая ткань восходящего тока), лубяной паренхимой (основная ткань) и лубяными волокнами (механическая ткань). В состав ксилемы входят сосуды и трахеиды (проводящая ткань нисходящего тока), древесинная паренхима (основная ткань) и древесинные волокна (механическая ткань). Гистологический состав ксилемы и флоэмы генетически детерминирован и может быть использован в систематике растений для диагностики разных таксонов. Кроме того, степень развития составных частей пучков может изменяться под влиянием условий произрастания растений.

Известно несколько видов сосудисто-волокнистых пучков.

Закрытые коллатеральные проводящие пучки характерны для листьев и стеблей однодольных покрытосеменных. В них отсутствует камбий. Флоэма и ксилема располагаются бок-о-бок. Для них характерны некоторые конструктивные особенности. Так, у пшеницы, отличающейся С 3 -путём фотосинтеза, пучки образуются из прокамбия и имеют первичную флоэму и первичную ксилему. Во флоэме выделяют более раннюю протофлоэму и более позднюю по времени образования, но более крупноклеточную метафлоэму. Во флоэмной части отсутствуют лубяная паренхима и лубяные волокна. В ксилеме первоначально образуются более мелкие сосуды протоксилемы, расположенные в одну линию перпендикулярно к внутренней границе флоэмы. Метаксилема представлена двумя крупными сосудами, расположенными рядом с метафлоэмой перпендикулярно цепочке сосудов протоксилемы. В этом случае сосуды располагаются Т-образно. Известно также V-, Y- и È-образное расположение сосудов. Между сосудами метаксилемы в 1 – 2 ряда расположена мелкоклеточная склеренхима с утолщенными стенками, которые по мере развития стебля пропитываются лигнином. Эта склеренхима отделяет зону ксилемы от флоэмы. По обе стороны от сосудов протоксилемы располагаются клетки древесинной паренхимы, которые, вероятно, выполняют трансфузионную роль, поскольку при переходе пучка из междоузлия в листовую подушку стеблевого узла они участвуют в образовании передаточных клеток. Вокруг проводящего пучка стебля пшеницы располагается склеренхимная обкладка, лучше развитая со стороны протоксилемы и протофлоэмы, около боковых сторон пучка клетки обкладки располагаются в один ряд.

У растений с С 4 -типом фотосинтеза (кукуруза, просо и др.) в листьях вокруг закрытых проводящих пучков располагается обкладка из крупных клеток хлоренхимы.

Открытые коллатеральные пучки характерны для стеблей двудольных. Наличие слоя камбия между флоэмой и ксилемой, а также отсутствие склеренхимной обкладки вокруг пучков обеспечивает их длительный рост в толщину. В ксилемной и флоэмной частях таких пучков имеются клетки основной и механической тканей.

Открытые коллатеральные пучки могут быть образованы двумя путями. Во-первых, это пучки, первично образуемые прокамбием. Затем в них из клеток основной паренхимы развивается камбий, производящий вторичные элементы флоэмы и ксилемы. В результате пучки будут сочетать гистологические элементы первичного и вторичного происхождения. Такие пучки характерны для многих травянистых цветковых растений класса Двудольные, имеющих пучковый тип строения стебля (бобовые, розоцветные и др.).

Во-вторых, открытые коллатеральные пучки могут быть образованы только камбием и состоять из ксилемы и флоэмы вторичного происхождения. Они типичны для травянистых двудольных с переходным типом анатомического строения стебля (астровые и др.), а также для корнеплодов типа свёклы.

В стеблях растений ряда семейств (Тыквенные, Пасленовые, Колокольчиковые и др.) встречаются открытые биколлатеральные пучки, где ксилема с двух сторон окружена флоэмой. При этом наружный участок флоэмы, обращенный к поверхности стебля, развит лучше внутреннего, а полоска камбия, как правило, располагается между ксилемой и наружным участком флоэмы.

Концентрические пучки бывают двух типов. В амфикрибральных пучках, характерных для корневищ папоротников, флоэма окружает ксилему, в амфивазальных – ксилема кольцом расположена вокруг флоэмы (корневища ириса, ландыша и др.). Реже концентрические пучки встречаются у двудольных (клещевина).

Закрытые радиальные проводящие пучки образуются в участках корней, имеющих первичное анатомическое строение. Радиальный пучок входит в состав центрального цилиндра и проходит через середину корня. Его ксилема имеет вид многолучевой звезды. Между лучами ксилемы располагаются клетки флоэмы. Число лучей ксилемы в значительной мере зависит от генетической природы растений. Например, у моркови, свеклы, капусты и других двудольных ксилема радиального пучка имеет только два луча. У яблони и груши их может быть 3 – 5, у тыквы и бобов – ксилема четырехлучевая, а у однодольных – многолучевая. Радиальное расположение лучей ксилемы имеет приспособительное значение. Оно сокращает путь воды от всасывающей поверхности корня к сосудам центрального цилиндра.

У многолетних древесных растений и некоторых травянистых однолетников, например у льна, проводящие ткани располагаются в стебле, не образуя четко выраженных проводящих пучков. Тогда говорят о непучковом типе строения стебля.

Ткани, регулирующие радиальный транспорт веществ

К специфическим тканям, регулирующим радиальный транспорт веществ относятся экзодерма и эндодерма.

Экзодерма является наружным слоем первичной коры корня. Она образуется непосредственно под первичной покровной тканью эпиблемой в зоне корневых волосков и состоит из одного или нескольких слоёв плотно сомкнутых клеток с утолщенными целлюлозными оболочками. В экзодерме вода, поступившая в корень по корневым волоскам, испытывает сопротивление вязкой цитоплазмы и перемещается в целлюлозные оболочки клеток экзодермы, а затем выходит из них в межклетники среднего слоя первичной коры, или мезодермы. Это обеспечивает эффективное поступление воды в более глубокие слои корня.

В зоне проведения в корне однодольных, где клетки эпиблемы отмирают и слущиваются, экзодерма оказывается на поверхности корня. Её клеточные стенки пропитываются суберином и препятствуют поступлению воды из почвы в корень. У двудольных экзодерма в составе первичной коры слущивается при линьке корня и замещается перидермой.

Эндодерма, или внутренний слой первичной коры корня, располагается вокруг центрального цилиндра. Она образуется одним слоем плотно сомкнутых клеток неодинакового строения. Одни из них, именуемые пропускными, имеют тонкие оболочки и легко проницаемы для воды. По ним вода из первичной коры поступает в радиальный проводящий пучок корня. Другие клетки имеют специфические целлюлозные утолщения радиальных и внутренних тангентальных стенок. Эти утолщения, пропитанные суберином, называются поясками Каспари. Они непроницаемы для воды. Поэтому вода поступает в центральный цилиндр только через пропускные клетки. А поскольку поглощающая поверхность корня значительно превосходит суммарную площадь сечения пропускных клеток эндодермы, то при этом возникает корневое давление, которое является одним из механизмов поступления воды в стебель, лист и репродуктивные органы.

Эндодерма входит также в состав коры молодого стебля. У некоторых травянистых покрытосеменных она как и в корне может иметь пояски Каспари. Кроме того, в молодых стеблях эндодерма может быть представлена крахмалоносным влагалищем. Таким образом, эндодерма может регулировать транспорт воды в растении и запасать питательные вещества.

Понятие о стеле и её эволюции

Возникновению, развитию в онтогенезе и эволюционным структурным преобразованиям проводящей системы уделяется большое внимание, поскольку она обеспечивает взаимосвязь органов растений и с ней связана эволюция крупных таксонов.

По предложению французских ботаников Ф. Ван Тигема и А. Дулио (1886) совокупность первичных проводящих тканей вместе с расположенными между ними другими тканями и перициклом, прилегающим к коре, была названа стелой. В состав стелы может также входить сердцевина и образуемая на её месте полость, как, например, у мятликовых. Понятие «стела» соответствует понятию «центральный цилиндр». Стела корня и стебля функционально едина. Изучение стелы у представителей разных отделов высших растений привело к формированию стелярной теории.

Различают два основных типа стелы: протостелу и эустелу. Наиболее древней является протостела. Её проводящие ткани располагаются в середине осевых органов, причём в центре находится ксилема, окруженная сплошным слоем флоэмы. Сердцевина или полость в стебле отсутствуют.

Существует несколько эволюционно связанных между собой видов протостелы: гаплостела, актиностела и плектостела.

Исходным, примитивным видом является гаплостела. У неё ксилема имеет округлую форму поперечного сечения и окружена ровным непрерывным слоем флоэмы. Вокруг проводящих тканей одним – двумя слоями располагается перицикл. Гаплостела была известна у ископаемых риниофитов и сохранилась у некоторых псилотофитов (тмезиптер).

Более развитым видом протостелы является актиностела, в которой ксилема на поперечном сечении приобретает форму многолучевой звезды. Она обнаружена у ископаемого астероксилона и некоторых примитивных плауновидных.

Дальнейшее разобщение ксилемы на отдельные участки, расположенные радиально или параллельно друг к другу, привело к образованию плектостелы, характерной для стеблей плауновидных. У актиностелы и плектостелы флоэма по-прежнему окружает ксилему со всех сторон.

В ходе эволюции из протостелы возникла сифоностела, отличительной особенностью которой является трубчатое строение. В центре такой стелы располагается сердцевина или полость. В проводящей части сифоностелы появляются листовые щели, благодаря которым возникает непрерывная связь сердцевины с корой. В зависимости от способа взаимного расположения ксилемы и флоэмы сифоностела бывает эктофлойной и амфифлойной. В первом случае флоэма с одной, наружной, стороны окружает ксилему. Во втором – флоэма окружает ксилему с двух сторон, с наружной и внутренней.

При разделении амфифлойной сифоностелы на сеть или ряды продольных тяжей возникает рассеченная стела, или диктиостела, характерная для многих папоротниковидных. Её проводящая часть представлена многочисленными концентрическими проводящими пучками.

У хвощей из эктофлойной сифоностелы возникла артростела, которая имеет членистое строение. Она отличается наличием одной крупной центральной полости и обособленных проводящих пучков с протоксилемными полостями (каринальными каналами).

У цветковых растений на основе эктофлойной сифоностелы образовалась эустела, характерная для двудольных, и атактостела, типичная для однодольных. В эустеле проводящая часть состоит из обособленных коллатеральных пучков, имеющих круговое расположение. В центре стелы в стебле располагается сердцевина, которая с помощью сердцевинных лучей соединяется с корой. В атактостеле проводящие пучки имеют рассеянное расположение, между ними находятся паренхимные клетки центрального цилиндра. Такое расположение пучков скрывает трубчатую конструкцию сифоностелы.

Возникновение различных вариантов сифоностелы является важным приспособлением высших растений к увеличению диаметра осевых органов – корня и стебля.



Ткани растений: проводящие, механические и выделительные

Виды растительных тканей

Проводящие ткани расположены внутри побегов и корней. Содержат ксилему и флоэму. Они обеспечивают растению два тока веществ: восходящий и нисходящий. Восходящий ток обеспечивает ксилема – к надземным частям движутся растворенные в воде минеральные соли. Нисходящий ток обеспечивает флоэма – органические вещества, синтезированные в листьях и зеленых стеблях, движутся к другим органам (к корням).

Ксилема и флоэма – это сложные ткани, которые состоят из трех основных элементов:

Проводящую функцию выполняют также клетки паренхимы, служащие для транспорта веществ между тканями растения (например, сердцевинные лучи древесных стеблей обеспечивают перемещение веществ в горизонтальном направлении от первичной коры к сердцевине).

Ксилема

Ксилема (от греч. ксилон – срубленное дерево). Состоит из собственно проводящих элементов и сопровождающих клеток основной и механической тканей. Созревшие сосуды и трахеиды – это мертвые клетки, которые обеспечивают восходящий ток (движение воды и минеральных веществ). Элементы ксилемы могут выполнять еще и опорную функцию. По ксилеме весной к побегам поступают растворы не только минеральных солей, но и растворенные сахара, которые образуются вследствие гидролиза крахмала в запасающих тканях корней и стеблей (например, березовый сок).

Трахеиды – это древнейшие проводящие элементы ксилемы. Трахеиды представлены вытянутыми веретенообразными клетками с заостренными концами, расположенными одна над другой. Они имеют одревесневшие клеточные стенки с разной степенью утолщения (кольчатым, спиральным, пористым и т. п.), которые не дают им распадаться, растягиваться. В клеточных стенках есть сложные поры, затянутые поровой мембраной, через которую проходит вода. Через поровую мембрану происходит фильтрация растворов. Движение жидкости по трахеидам медленное, так как поровая мембрана препятствует движению воды. У высших споровых и голосеменных растений на трахеиды приходится около 95 % объема древесины.

Сосуды или трахеи , состоят из удлиненных клеток, расположенных одна над другой. Они образуют трубки при слиянии и отмирании отдельных клеток – члеников сосудов. Цитоплазма отмирает. Между клетками сосудов есть поперечные стенки, которые имеют большие отверстия. В стенках сосудов есть утолщения разнообразной формы (кольчатые, спиральные и т. п.). Восходящий ток происходит по относительно молодым сосудам, которые с течением времени заполняются воздухом, закупориваются выростами соседних живых клеток (паренхимы) и выполняют далее опорную функцию. По сосудам жидкость движется быстрее, чем по трахеидам.

Флоэма

Флоэма (от греч. флойос – кора) состоит из проводящих элементов и сопровождающих клеток.

Ситовидные трубки – это живые клетки, которые последовательно соединяются своими концами, не имеют органелл, ядра. Обеспечивают движение от листьев по стеблю к корню (проводят органические вещества, продукты фотосинтеза). В них есть разветвленная сеть фибрилл, внутреннее содержимое сильно обводнено. Между собою разделены пленочными перегородками с большим количеством мелких отверстий (перфораций) – ситовидными (перфорационными) пластинками (напоминают сито). Продольные оболочки этих клеток утолщенные, но не древеснеют. В цитоплазме ситовидных трубок разрушается тонопласт (оболочка вакуолей), и вакуолярный сок с растворенными сахарами смешивается с цитоплазмой. С помощью тяжей цитоплазмы соседние ситовидные трубки объединены в единое целое. Скорость движения по ситовидным трубкам меньше, чем по сосудам. Функционируют ситовидные трубки 3-4 года.

Каждый членик ситовидной трубки сопровождают клетки паренхимы – клетки-спутники , которые секретируют вещества (ферменты, АТФ и т. п.), необходимые для их функционирования. Клетки-спутники имеют большие ядра, заполнены цитоплазмой с органеллами. Они присущи не всем растениям. Их нет во флоэме высших споровых и голосеменных растений. Клетки-спутники помогают осуществить процесс активного транспорта по ситовидным трубкам.

Флоэма и ксилема образуют сосудисто-волокнистые (проводящие) пучки . Их можно увидеть в листьях, стеблях травянистых растений. В стволах деревьев проводящие пучки сливаются между собой и образуют кольца. Флоэма входит в состав луба и расположена ближе к поверхности. Ксилема входит в состав древесины и содержится ближе к сердцевине.

Сосудисто-волокнистые пучки бывают закрытые и открытые – это таксономический признак. Закрытые пучки не имеют между слоями ксилемы и флоэмы слоя камбия, поэтому образование новых элементов в них не происходит. Закрытые пучки встречаются преимущественно у однодольных растений. Открытые сосудисто-волокнистые пучки между флоэмой и ксилемой имеют слой камбия. Вследствие деятельности камбия пучок разрастается и происходит утолщение органа. Открытые пучки встречаются преимущественно у двухдольных и голосеменных растений.

Выполняют опорные функции. Образуют скелет растения, обеспечивают его прочность, придают упругость, поддерживают органы в определенном положении. Не имеют механических тканей молодые участки растущих органов. Наиболее развиты механические ткани в стебле. В корне механическая ткань сосредоточена в центре органа. Различают коленхиму и склеренхиму.

Коленхима

Коленхима (от греч. кола – клей и энхима – налитое) – состоит из живых хлорофиллоносных клеток с неравномерно утолщенными стенками. Различают угловую и пластинчатую коленхимы. Угловая коленхима состоит из клеток, которые имеют шестиугольную форму. Утолщение происходит вдоль ребер (по углам). Встречается в стеблях двудольных растений (преимущественно травянистых) и черенках листьев. Не мешает росту органов в длину. Пластинчатая коленхима имеет клетки с формой параллелепипеда, в котором утолщена лишь пара стенок, параллельных поверхности стебля. Встречается в стеблях древесных растений.

Склеренхима

Склеренхима (от греч. склерос – твердый) – это механическая ткань, которая состоит из одревесневших (пропитанных лигнином) преимущественно мертвых клеток, которые имеют равномерно утолщенные клеточные стенки. Ядро и цитоплазма разрушаются. Различают две разновидности: склеренхимные волокна и склереиды.

Склеренхимные волокна

Клетки имеют удлиненную форму с заостренными концами и поровыми каналами в клеточных стенках. Стенки клеток утолщенные и очень крепкие. Клетки плотно прилегают одна к другой. На поперечном срезе – многогранные.

В древесине склеренхимные волокна называются древесными . Они являются механической частью ксилемы, защищают сосуды от давления других тканей, ломкости.

Склеренхимные волокна луба называются лубяными. Обычно они неодревесневшие, крепкие и эластичные (используются в текстильной промышленности – волокна льна и т. п.).

Склереиды

Образуются из клеток основной ткани вследствие утолщения клеточных стенок, пропитки их лигнином. Имеют разную форму и встречаются в разных органах растений. Склереиды с одинаковым диаметром клеток называются каменистыми клетками . Они наиболее прочные. Встречаются в косточках абрикосов, вишен, скорлупе грецких орехов и т. п.

Склереиды также могут иметь звездчатую форму, расширения на обоих концах клетки, палочковидную форму.

Выделительные ткани растений

В результате процесса метаболизма в растениях образуются вещества, которые по разным причинам почти не используются (за исключением млечного сока). Обычно эти продукты накапливаются в определенных клетках. Представлены выделительные ткани группами клеток или одиночными. Делятся на внешние и внутренние.

Внешние выделительные ткани

Внешние выделительные ткани представлены видоизменениями эпидермы и особыми железистыми клетками в основной ткани внутри растений с межклеточными полостями и системой выделительных ходов, которыми секреты выводятся наружу. Выделительные ходы в разных направлениях пронизывают стебли и частично листья и имеют оболочку из нескольких слоев отмерших и живых клеток. Видоизменения эпидермы представлены многоклеточными (реже одноклеточными) железистыми волосками или пластинками разнообразного строения. Внешние выделительные ткани производят эфирные масла, бальзамы, смолы и т. п.

Известно около 3 тыс. видов голосеменных и покрытосеменных растений, которые производят эфирные масла. Около 200 видов (лавандовое, розовое масла и др.) из них используют как лечебные средства, в парфюмерии, кулинарии, изготовлении лаков и т. п. Эфирные масла – это легкие органические вещества разного химического состава. Их значение в жизни растений: запахом привлекают опылителей, отпугивают врагов, некоторые (фитонциды) – убивают или подавляют рост и размножение микроорганизмов.

Смолы образуются в клетках, которые окружают смоляные ходы, как продукты жизнедеятельности голосеменных (сосна, кипарис и т. п.) и покрытосеменных (некоторые бобовые, зонтичные и т. п.) растений. Это – разные органические вещества (смоляные кислоты, спирты и т. п.). Наружу выделяются с эфирными маслами в виде густых жидкостей, которые называются бальзамами . Они имеют антибактериальные свойства. Используются растением в природе и человеком в медицине для заживления ран. Канадский бальзам, который получают из пихты бальзамической, применяют в микроскопической технике для изготовления микропрепаратов. Основу бальзамов хвойных составляет скипидар (используют как растворитель красок, лаков и т. п.) и твердая смола – канифоль (используют при паянии, изготовлении лаков, сургуча, натирании струн смычковых музыкальных инструментов). Окаменелая смола хвойных деревьев второй половины мелово-палеогенового периода называется янтарь (используется как сырье для ювелирных изделий).

Железы, расположенные в цветке или на разных частях побегов, клетки которых выделяют нектар, называются нектарниками . Они образованы основной тканью, имеют протоки, которые открываются наружу. Выросты эпидермы, которые окружают проток, придают нектарнику разную форму (горбовидную, ямковидную, рожковидную и т. п.). Нектар – это водный раствор глюкозы и фруктозы (концентрация составляет от 3 до 72 %) с примесями ароматических веществ. Основная функция – привлечение насекомых и птиц для опыления цветков.

Благодаря гидатодам – водяным устьицам – происходит гуттация – выделение капельной воды растениями (при транспирации вода выделяется в виде пара) и солей. Гуттация – это защитный механизм, который происходит тогда, когда с удалением лишней воды не справляется транспирация. Характерна для растений, которые растут во влажном климате.

Специальные железы насекомоядных растений (известно свыше 500 видов покрытосеменных) выделяют ферменты, которые разлагают белки насекомых. Таким образом, насекомоядные растения восполняют недостаток азотистых соединений, так как их в почве не хватает. Всасываются переваренные вещества через устьица. Наиболее известны пузырчатка и росянка.

Железистые волоски накапливают и выводят наружу, например, эфирные масла (мята и т. п.), ферменты и муравьиную кислоту, которые вызывают ощущение боли и приводят к ожогам (крапива) и др.

Внутренние выделительные ткани

Внутренние выделительные ткани – это вместилища веществ или отдельные клетки, которые на протяжении жизни растения наружу не открываются. Это, например, млечники – система удлиненных клеток некоторых растений, по которым движется сок. Сок таких растений является эмульсией водного раствора сахаров, белков и минеральных веществ с каплями липидов и других гидрофобных соединений, называется латексом и имеет молочно-белый (молочай, мак и т. п.) или оранжевый (чистотел) цвета. В млечном соке некоторых растений (например, гевея бразильская) содержится значительное количество каучука .

К внутренней выделительной ткани принадлежат идиобласты – отдельные разрозненные клетки среди других тканей. В них накапливаются кристаллы щавелевокислого кальция, дубильные вещества и т. п. Клетки (идиобласты) цитрусовых (лимон, мандарин, апельсин и т. п.) накапливают эфирные масла.