Вероятность события. Определение вероятности события

В своей практической деятельности мы часто встречаемся с явлениями, исход которых невозможно предсказать, результат которых зависит от случая. Теория вероятностей – это раздел математики, в котором изучаются случайные явления (события) и выявляются закономерности при массовом их повторении. Основное понятие теории вероятностей - вероятность события (относительная частота события) - объективная мера возможности осуществления данного события.

События принято обозначать заглавными буквами латинского алфавита: А, В, С, D. Перечислим основные виды случайных событий :

  • события называются несовместными , если никакие два из них не могут произойти в данном испытании (опыте) вместе. Например, при подбрасывании монеты появление цифры исключает одновременное появление герба;
  • два события называются совместными , если появление одного из них не исключает появление другого события в том же испытании (опыте);
  • событие называется достоверным , если оно происходит в данном испытании обязательно. Например, выигрыш по билету беспроигрышной лотереи есть событие достоверное;
  • событие называется невозможным , если оно в данном испытании не может произойти. Например, при бросании игральной кости невозможно получить 7 очков;
  • два события называются противоположными (А и А̄), если в данном испытании они несовместны и одно из них обязательно происходит. Вероятности противоположных событий в сумме дают 1;
  • событие В называется независимым от события А, если появление события А не изменяет вероятности события В: Р А (В)= Р(В). В противном случае событие В называется зависимым от события А;

Полной системой событий А 1 , А 2 , А 3 , …, Аn называется совокупность несовместных событий, наступление хотя бы одного из которых обязательно при данном испытании (опыте).

Каждому событию A ставится в соответствие некоторая мера P(A), которая называется вероятностью этого события и которая удовлетворяет следующим аксиомам:

  • для любого события 0 ≤ P(A) ≤ 1;
  • вероятность невозможного события равна нулю, P(А)=0;
  • вероятность достоверного события равна единице, Р(А)=1.

Существует классический и геометрический способы подсчета вероятности события.

При классическом способе подсчета вероятность события А вычисляется по формуле: Р(А)=m/n , где:

  • все элементарные исходы равновозможны, т.е. ни один из них не является более возможным, чем другой;
  • m – число элементарных исходов испытания, благоприятствующих появлению события А;
  • n – общее число всех возможных элементарных исходов испытания.

Для подсчета n и m часто применяются понятия и формулы комбинаторики :

  • n-факториал – это произведение всех натуральных чисел от единицы до n включительно: n! = 1*2*3*…*(n-1)*n . Например: 4!=1*2*3*4=24, 1!=1, 0!=1
  • перестановка из n элементов – комбинация из n элементов, которые отличаются друг от друга только порядком элементов. Число всех возможных перестановок вычисляют по формуле: P n = n!
  • перестановка с повторениями – пусть даны n 1 элементов первого типа, n 2 - второго типа, ..., n k - k-го типа, всего n элементов. Способы разместить их по различным местам называются перестановками с повторениями. Число всех перестановок с повторениями вычисляют по формуле: Pn(n 1 ,n 2 ,…,n k) = n! / n 1 !n 2 !...n k !
  • размещения – комбинации из n элементов по m (mА n m = n!/(n-m)! , где
    n – число всех имеющихся элементов, m- число элементов в каждой комбинации.
    При n=m размещение становится перестановкой. Если не принимать во внимание порядок элементов в размещении, а учитывать только его состав, то получается сочетание.
  • сочетания – все возможные комбинации из n элементов по m (mС n m = n! / m!(n-m)! = А n m / P m

Геометрический способ подсчета вероятности применяется, когда элементарные исходы эксперимента могут быть интерпретированы как точки отрезка, фигуры или тела.

Пусть отрезок l составляет часть отрезка L. Если предположить, что вероятность попадания точки на отрезок l пропорциональна длине этого отрезка, то вероятность попадания точки на отрезок l определяется равенством: Р = Длина l / Длина L .

Вероятность попадания точки в плоскую фигуру g, составляющую часть плоской фигуры G: Р = Площадь g/Площадь G .

Вероятность попадания точки в пространственную фигуру υ, которая составляет часть фигуры V: Р = Объем υ /Объем V .

Примеры решения задач по теме «Элементы комбинаторики. События и их вероятности»

Задача 1

В 11-м классе 30 человек. 18 человек изучают английский язык, 16 – немецкий, 9 – оба языка. Сколько человек изучают а) только английский язык, б) только немецкий язык, в) не изучают ни одного языка?

Решение.
а) поскольку 18 человек изучают английский, из них 9 изучают и английский и немецкий, то 18–9=9 человек изучают только английский язык;
б) поскольку 16 человек изучают немецкий, из них 9 изучают и немецкий и английский, то 16–9=7 человек изучают только немецкий язык;
в) поскольку в классе 30 человек, из них 9 изучают только английский, 7 – только немецкий, 9 – оба языка, то 30 – (9+7+9) = 5 человек не изучают ни одного языка.

Задача 2

Сколькими способами можно переставить буквы в слове «фикус»?

Решение. В данном случае необходимо найти число перестановок из 5 букв, а поскольку в слове «фикус» все буквы разные, то число перестановок определяем по формуле: P 5 =5!=1*2*3*4*5=120.

Задача 3

Сколькими способами можно переставить буквы в слове «ответ»?

Решение. Необходимо найти число перестановок из 5 букв, но в отличие от задачи 2, здесь имеются повторяющиеся буквы – буква «т» повторяется дважды. Поэтому число способов определим по формуле перестановок с повторениями: P 5 (1, 2, 1, 1) = 5! / 2! = 60.

Задача 4

В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по производной. Найдите вероятность того, что в случайно выбранном на экзамене билете учащемуся не достанется вопрос по производной.

Решение. В данном случае число благоприятных исходов равно (25-10)=15, общее число событий – 25.
Вероятность события А = {учащемуся не достанется вопрос по производной} находим как отношение: Р(А)=15/25=0,6.

Задача 5

В ящике имеется 15 деталей, среди которых 8 окрашенных. Сборщик наудачу извлекает три детали. Найти вероятность того, что извлеченные детали окажутся окрашенными.

Решение. Событие А = {извлечены три окрашенных детали}.

Общее число всех возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 3 детали из 15:
n = С 15 3 =15! / 3!(15-3)!=15! / (3!*12!) = 13*7*5=455.
Число благоприятных исходов равно числу способов, которыми можно извлечь 3 детали из 8 окрашенных:
m = С 8 3 =8! / 3!(8-3)!= 8! / (3!*5!)=7*8=56.

Вероятность события А находим как отношение: Р(А) = m/n= 56/455≈0,12

Задача 6

Среди 17 студентов группы, из которых 8 – девушки, разыгрывается 7 билетов в театр. Какова вероятность того, что среди обладателей билетов окажутся 4 девушки и 3 юношей?

Решение. Событие А = {среди обладателей билетов ровно 4 девушки} .

Общее число возможных элементарных исходов розыгрыша равно числу способов, которыми можно выбрать 7 человек из всех студентов группы, т. е. из 17: n = С 17 7 =17! / 7!(17-7)!= 17! / (7!*10!)=19448.

Число благоприятных исходов (среди 7 обладателей билетов 4 девушки и 3 юношей) найдем, учитывая, что 4-х девушек их 8 можно выбрать С 8 4 способами, а 3-х юношей из 9 можно выбрать С 9 3 способами. Следовательно, m = С 8 4 *С 9 3 = 8!9! / 4!(8-4)!3!(9-3)! = 5880.

Вероятность события А находим как отношение: Р(А) = m/n= 5880/19448≈0,3

Учебник по теории вероятности: содержание

Глава 1. Случайные события. Вычисление вероятности

    1.1. Элементы комбинаторики

    1.2. Классическое определение вероятности

    1.3. Геометрическое определение вероятности

    1.4. Сложение и умножение вероятностей

    1.5. Условная вероятность

    1.6. Формула полной вероятности и формула Байеса

    1.7. Независимые испытания. Формула Бернулли

    1.8. Наивероятнейшее число успехов

    1.9. Формула Пуассона

    1.10. Теоремы Муавра-Лапласа

1.1. Элементы комбинаторики

Рассмотрим некоторое множество Х , состоящее из n элементов . Будем выбирать из этого множества различные упорядоченные подмножества из k элементов.

Размещением из n элементов множества Х по k элементам назовем любой упорядоченный набор элементов множества Х .

Если выбор элементов множества из Х происходит с возвращением, т.е. каждый элемент множества Х может быть выбран несколько раз, то число размещений из n по k находится по формуле (размещения с повторениями ).

Если же выбор делается без возвращения, т.е. каждый элемент множества Х можно выбирать только один раз, то количество размещений из n по k обозначается и определяется равенством

(размещения без повторений ).


Пример.
Пусть даны шесть цифр: 1; 2; 3; 4; 5; 6. Определить сколько трехзначных чисел можно составить из этих цифр.

Решение. Если цифры могут повторяться, то количество трехзначных чисел будет . Если цифры не повторяются, то .

Пример. Студенты института изучают в каждом семестре по десять дисциплин. В расписание занятий включаются каждый день по 3 дисциплины. Сколько различных расписаний может составить диспетчерская?

Решение . Расписание на каждый день может отличаться либо предметами, либо порядком расположения этих предметов, поэтому имеем размещения:

Частный случай размещения при n =k называется перестановкой из n элементов. Число всех перестановок из n элементов равно
.

Пример . 30 книг стоит на книжной полке, из них 27 различных книг и одного автора три книги. Сколькими способами можно расставить эти книги на полке так, чтобы книги одного автора стояли рядом?

Решение. Будем считать три книги одного автора за одну книгу, тогда число перестановок будет . А три книги можно переставлять между собой способами, тогда по правилу произведения имеем, что искомое число способов равно: *=3!*28!

Пусть теперь из множества Х выбирается неупорядоченное подмножество (порядок элементов в подмножестве не имеет значения). Сочетаниями из n элементов по k называются подмножества из k элементов, отличающиеся друг от друга хотя бы одним элементом. Общее число всех сочетаний из n по k обозначается и равно
.

Справедливы равенства: , , .

Пример. В группе из 27 студентов нужно выбрать трех дежурных. Сколькими способами можно это сделать?

Решение. Так как порядок студентов не важен, используем формулу для числа сочетаний: .

При решении задач комбинаторики используют следующие правила:

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.

Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана m*n способами.

Пример. Наряд студентки состоит из блузки, юбки и туфель. Девушка имеет в своем гардеробе четыре блузки, пять юбок и трое туфель. Сколько нарядов может иметь студентка?

Решение. Пусть сначала студентка выбирает блузку. Этот выбор может быть совершен четырьмя способами, так как студентка имеет четыре блузки, затем пятью способами произойдет выбор юбки и тремя способами выбор туфель. По принципу умножения получается 4*5*3=60 нарядов (комбинаций).

1.2. Классическое определение вероятности

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события А , если появление этого события влечет за собой появление события А .

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместных элементарных исходов, образующих полную группу

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству .

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаевm =n =10. Следовательно, Р (А )=1. Событие А достоверное .

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m =0, n =15. Следовательно, искомая вероятность р =0. Событие, заключающееся в вынимании синего шара, невозможное .

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение . Количество элементарных исходов (количество карт) n =36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А , m =9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е.
.

Найдем число исходов, благоприятствующих интересующему нас событию: трех женщин можно выбрать из четырех способами; при этом остальные четыре человека должны быть мужчинами, их можно отобрать способами. Следовательно, число благоприятствующих исходов равно .

Искомая вероятность
.

1.3. Геометрическое определение вероятности

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением:
,
где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние x от центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов – это отрезок . Пересечение круга с полосой произойдет в том случае, если его центр попадет в полосу, т.е. , или будет находится от края полосы на расстоянии меньшем чем радиус, т.е. .

Для искомой вероятности получаем: .

1.4. Сложение и умножение вероятностей

Событие А называется частным случаем события В , если при наступлении А наступает и В . То, что А является частным случаем В , записываем .

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записываем А = В .

Суммой событий А и В называется событие А + В , которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двухнесовместных событий равна сумме вероятностей этих событий.

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

.

Если случайные события образуют полную группу несовместных событий, то имеет место равенство

Произведением событий А и В называется событие АВ , которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными , если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

События событий А и В называются независимыми , если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В , если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности (см. следующий раздел).

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.

Решение. Обозначим события: А – вынули белый шар из первого ящика,
;

Вынули черный шар из первого ящика,
;

В – белый шар из второго ящика,
;

Черный шар из второго ящика,
.

Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) хотя бы одного попадания; г) одного попадания.

Решение.

Пусть А – попадание первого стрелка, ;

В – попадание второго стрелка, .

Тогда - промах первого, ;

Промах второго, .

Найдем нужные вероятности.

а) АВ – двойное попадание,

б) – двойной промах, .

в) А +В – хотя бы одно попадание,

г) – одно попадание,

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Решение.

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий? Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий , независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

Если события имеют одинаковую вероятность , то формула принимает простой вид:

.

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p 1 = 0,8;p 2 = 0,7; p 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:

, ,

Искомая вероятность .

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События "машина работает" и "машина не работает" (в данный момент) - противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие "при n выстрелах стрелок попадает в цель хотя бы один раз". События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .

Приняв во внимание, что, по условию, (следовательно, ), получим

Прологарифмируем это неравенство по основанию 10:

Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.

1.5. Условная вероятность

Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной . Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А .

Условной вероятностью (два обозначения) называют вероятность события В , вычисленную в предположении, что событие А уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

В частности, отсюда получаем
.

Пример. В урне находятся 3 белых шара и 2 черных. Из урны вынимается один шар, а затем второй. Событие В – появление белого шара при первом вынимании. Событие А – появление белого шара при втором вынимании.

Решение. Очевидно, что вероятность события А , если событие В произошло, будет
.
Вероятность события А при условии, что событие В не произошло, будет
.

Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность .

Этот же результат можно получить по формуле
.

Действительно, вероятность появления белого шара при первом испытании
.

Найдем вероятность того, что в первом испытании появится черный шар, а во втором - белый. Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений . Из этого числа исходов событию благоприятствуют исходов. Следовательно, .

Искомая условная вероятность

Результаты совпали.

Пример. В трамвайном парке имеются 15 трамваев маршрута №1 и 10 трамваев маршрута №2. Какова вероятность того, что вторым по счету на линию выйдет трамвай маршрута №1?

Решение . Пусть А - событие, состоящее в том, что на линию вышел трамвай маршрута №1, В - маршрута №2.

Рассмотрим все события, которые могут при этом быть (в условиях нашей задачи): . Из них нас будут интересовать только первое и третье, когда вторым выйдет трамвай маршрута №1.

Так как все эти события совместны, то:

;

;

отсюда искомая вероятность

Пример. Какова вероятность того, что 2 карты, вынутые из колоды в 36 карт, окажутся одной масти?

Решение . Сначала подсчитаем вероятность того, что две карты окажутся одной определенной масти (например «пики»). Пусть А - появление первой карты такой масти, В - появление второй карты той же масти. Событие В зависит от события А , т.к. его вероятность меняется от того, произошло или нет событие А . Поэтому придется воспользоваться теоремой умножения в ее общей форме:

,
где (после вынимания первой карты осталось 35 карт, из них той же масти, что и первая - 8).

Получаем
.

События, состоящие в том, что будут вынуты две карты масти «пики», масти «треф» и т.д., несовместны друг с другом. Следовательно, для нахождения вероятности их объединения воспользуемся теоремой сложения:
.

1.6. Формула полной вероятности и формула Байеса

Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий , то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности .

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами . Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса ). Вероятности гипотез называются апостериорными вероятностями , тогда как -априорными вероятностями .

Пример. В магаз поступила новая продукция с 3х предприятий.20%-продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

А 1 - на линию огня вызван первый стрелок,

А 2 - на линию огня вызван второй стрелок,

А 1 - на линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: – взятая наудачу деталь обработана на -ом станке, .

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

А так как гипотезы образуют полную группу, то .

Решив полученную систему уравнений, найдем: .

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная:

Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.

б) Пусть известно, что взятая наудачу деталь – бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:

Таким образом, в общей массе бракованных деталей на конвейере доля первого станка составляет 33%, второго – 39%, третьего – 28%.

1.7. Независимые испытания. Формула Бернулли

При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли .

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода : либо появится событие А , либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события А в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события А в единичном испытании буквой р, т.е. , а вероятность противоположного события (событие А не наступило) - буквой .

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражаетсяформулой Бернулли

Распределение числа успехов (появлений события) носит название биномиального распределения .

Пример. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.

Решение. Событие А – достали белый шар. Тогда вероятности
, .
По формуле Бернулли требуемая вероятность равна
.

Пример. Определить вероятность того, что в семье, имеющей 5 деталей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки
, тогда .

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:

, ,

, .

Следовательно, искомая вероятность

.

Пример. Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными.

Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество. Событие А - «появление нестандартной детали», его вероятность , тогда . Отсюда по формуле Бернулли находим
.

Пример. При каждом отдельном выстреле из орудия вероятность поражения цели равна 0,9. Найти вероятность того, что из 20 выстрелов число удачных будет не менее 16 и не более 19.

Решение. Вычисляем по формуле Бернулли:

Пример. Независимые испытания продолжаются до тех пор, пока событие А не произойдет k раз. Найти вероятность того, что потребуется n испытаний (n ³ k), если в каждом из них .

Решение. Событие В – ровно n испытаний до k -го появления события А – есть произведение двух следующий событий:

D – в n -ом испытании А произошло;

С – в первых (n–1) -ом испытаниях А появилось (к-1) раз.

Теорема умножения и формула Бернулли дают требуемую вероятность:

Надо заметить, что использование биномиального закона зачастую связано с вычислительными трудностями. Поэтому с возрастанием значений n и m становится целесообразным применение приближенных формул (Пуассона, Муавра-Лапласа), которые будут рассмотрены в следующих разделах.

1.8. Наивероятнейшее число успехов

Биномиальное распределение (распределение по схеме Бернулли) позволяет, в частности, установить, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов (появлений события) имеет вид:

Так как , то эти границы отличаются на 1. Поэтому , являющееся целым числом, может принимать либо одно значение, когда целое число () , то есть когда (а отсюда и ) нецелое число, либо два значения, когда целое число.

Пример. При автоматической наводке орудия вероятность попадания по быстро движущейся цели равна 0,9. Найти наивероятнейшее число попаданий при 50 выстрелах.

Решение. Здесь . Поэтому имеем неравенства:

Следовательно, .

Пример. Данные длительной проверки качества выпускаемых стандартных деталей показали, что в среднем брак составляет 7,5%. Определить наиболее вероятное число вполне исправных деталей в партии из 39 штук.

Решение. Обозначая вероятность выпуска исправной детали через , будем иметь и (получение бракованной детали и получение исправной детали - события противоположные). Так как здесь n= 39, то искомое число можно найти из неравенств:

Отсюда наивероятнейшее число исправных деталей равно 36 или 37.

Неравенства для наивероятнейшего числа успехов позволяют решить и обратную задачу: по данному и известному значению р определить общее число n всех испытаний.

Пример. При каком числе выстрелов наивероятнейшее число попаданий равно 16, если вероятность попадания в отдельном выстреле составляет 0,7? Т А к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность (по сравнению с исходной формулой Бернулли). ., находим, вероятности выводится по ... 45 Сама теория достаточно сложна и подробно излагается лишь в специальных учебниках по корпоративным...

  • Менеджмент учебник санкт-петербург издательство «союз»

    Учебник

    ... по аппарату построения (форма); – по характеру моделируемых объектов содержание ). По ... вероятности во всех случаях, то учебники по теории вероятностей (а заодно и данная глава ... Теория вероятностей утверждает, что случайные события , ... вычислений . ...

  • Приказ № от 2014 г. Рабочая программа по математике класс: 5 (базовый уровень)

    Рабочая программа

    А. Г. Математика. 6 кл. Учебники по содержанию и по стилю выстроены так, чтобы... Глава 6. 4 2 2 - Введение в вероятность . §53 Достоверные, невозможные и случайные события Вероятность наступления событий . Достоверные, невозможные и случайные события ...

  • Проект основной образовательной программы мкоу бутурлиновская сош №1 Бутурлиновского муниципального района Воронежской области на 2012-2017гг

    Основная образовательная программа

    ... Случайные события и вероятность . Понятие о случайном опыте и случайном событии . Частота случайного события . Статистический подход к понятию вероятности . Вероятности противоположных событий . Достоверные и невозможные события . Равновозможность событий ...

  • Предмет теории вероятностей . Случайные события и их классификация. Классическое определение вероятности . Общие принципы комбинаторики.

    Вероятность относится к числу таких понятий, которыми мы охотно пользуемся в повседневной жизни, совсем не задумываясь об этом. Например, даже наша речь носит отпечаток стихийно-вероятностного подхода к окружающей нас действительности. Мы часто употребляем слова "вероятно ", "маловероятно ", "невероят­но" . Уже в этих словах имеется попытка оценить возможность появления того или иного события, т.е. попытка дать количественную оценку этой возможности. Идея выражать числами степень возможности появления тех или иных событий возникла после того, как люди попытались обобщить достаточно большое число наблюдений за явлениями, в которых проявляется свойство устойчивости, т.е. способность повторяться довольно часто.

    Например, нельзя заранее определить результат одного подбрасывания монеты. Но если подбрасывать монету достаточно большое число раз, то почти наверняка можно утверждать, что примерно половину раз она упадет на "орла", а половину на "решку". Число подобных примеров, в которых интуитивное представление о численном значении вероятности того или иного события, можно привести очень много. Однако все подобные примеры сопровождаются неопределенными понятиями типа "честное" подбрасывание, "правильная" монета и т.п. Теория вероятностей стала наукой лишь тогда, когда были выявлены основные понятия теории вероятностей, четко сформулировано само понятие вероятности, построена вероятностная аксиоматическая модель.

    Любая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, плоскости, линии, поверхности; в математическом анализе – функции, предела, дифференциала, интеграла; в механике – силы, массы, скорости, ускорения. Естественно, что такие понятия есть и в теории вероятностей. Одним из таких основных понятий является понятие случайного события .

    1. Случайные события и их вероятности

    1.1. Случайные события и их классификация

    Под событием будем понимать любое явление, которое происходит в результате осуществления определенного комплекса условий. Осуществление этого комплекса условий называют экспериментом (опытом, испытанием ). Заметим, что в проведении опыта необязательно должен участвовать сам исследователь. Опыт можно поставить мысленно, или он может протекать независимо от него; в последнем случае исследователь выступает в качестве наблюдателя.

    Событие называется достоверным , если оно непременно должно произойти при выполнении определенных условий. Так, достоверным является выпадение не более шести очков при бросании обычной игральной кости; утверждение, что вода является находится в жидком состоянии при +20 0 С в нормальных условиях, и т.п. Событие называется невозможным , если оно заведомо не наступит при выполнении определенных условий. Так, невозможным событием является утверждение, что можно извлечь более четырех тузов из обычной колоды карт; или утверждение Мюнхгаузена, что он мог поднять себя за волосы, и т.п. Событие называется случайным, если оно может либо произойти, либо не произойти при выполнении определенных условий. Например, выпадение «орла» при бросании монеты; попадание в цель при одном выстреле по мишени и т.п.

    В теории вероятностей любое событие рассматривается как результат некоторого эксперимента. Поэтому события часто называют исходами . При этом исход того или иного эксперимента должен зависеть от ряда случайных факторов, т.е. любой исход должен являться случайным событием; в противном случае, такими событиями должны заниматься другие науки. Особо следует отметить, что в теории вероятностей рассматриваются только такие эксперименты, которые можно повторить (воспроизвести) при неизменном комплексе условий произвольное число раз (по крайней мере теоретически). То есть, теория вероятностей изучает лишь такие события, в отношении которых имеет смысл не только утверждение об их случайности, но и возможна объективная оценка доли случаев их появления. В связи с этим, подчеркнем, что теория вероятностей не занимается изучением уникальных событий, как бы они ни были интересными сами по себе. Например, утверждение, что в данном месте в данное время произойдет землетрясение, относится к числу случайных событий. Однако подобные события уникальны, поскольку их нельзя воспроизвести.

    Другой пример, событие, состоящее в том, что данный механизм проработает больше года, является случайным, но уникальным. Конечно, каждый механизм индивидуален по своим качествам, но этих механизмов может изготовляться очень много, причем изготовленных в одних и тех же условиях. Испытания многих сходных объектов дает ту информацию, которая позволяет оценить долю числа появления рассматриваемого случайного события. Таким образом, в теории вероятностей имеют дело с повторением испытаний двух типов : 1) повторение испытаний для одного и того же объекта ; 2) испытание многих сходных объектов .

    В дальнейшем для краткости слово «случайный» будем опускать. События будем обозначать заглавными буквами латинского алфавита: A, B, C и т.д.

    События A и B называются несовместными , если наступление одного из них исключает возможность появления другого. Например, при подбрасывании монеты могут наступить два события: выпадет "орел" или "решка". Однако, одновременно эти события, при одном подбрасывании, появится не могут. Если в результате испытания возможно одновременное появление событий A и B, то такие события называются совместными . Например, выпадение четного числа очков при подбрасывании игральной кости (событие А) и числа очков, кратного трем (событие В) будут совместными, ибо выпадение шести очков означает наступление и события А, и события В.

    Событие А называется независимым от события В, если вероятность появления события А не зависит от того, произошло событие В или нет; в противном случае такие события называются зависимыми . Например, вероятность события того. что во второй раз из урны, содержащей белые и черные шары, будет вынут белый шар, не зависит от того, какой шар был вынут в первый раз, если он был возвращен обратно. Однако если первый шар не был возвращен обратно, то результат второго извлечения уже будет зависеть от первого, ибо состав шаров в урне уже изменится в зависимости от результата первого извлечения.

    Вопрос . Зависимы или нет несовместные события?

    Вряд ли многие люди задумываются, можно ли просчитать события, которые в той или иной мере случайны. Выражаясь простыми словами, реально ли узнать, какая сторона кубика в выпадет в следующий раз. Именно этим вопросом задались два великих ученых, положившие начало такой науке, как теория вероятности, вероятность события в которой изучается достаточно обширно.

    Зарождение

    Если попытаться дать определение такому понятию, как теория вероятности, то получится следующее: это один из разделов математики, который занимается изучением постоянства случайных событий. Ясное дело, данное понятие толком не раскрывает всю суть, поэтому необходимо рассмотреть ее более детально.

    Хотелось бы начать с создателей теории. Как было выше упомянуто, их было двое, это и Именно они одни из первых попытались с использованием формул и математических вычислений просчитать исход того или иного события. В целом же зачатки этой науки проявлялись еще в средневековье. В то время разные мыслители и ученые пытались проанализировать азартные игры, такие как рулетка, кости и так далее, тем самым установить закономерность и процентное соотношение выпадения того или иного числа. Фундамент же был заложен в семнадцатом столетии именно вышеупомянутыми учеными.

    Поначалу их труды нельзя было отнести к великим достижениям в этой области, ведь все, что они сделали, это были попросту эмпирические факты, а опыты ставились наглядно, без использования формул. Со временем получилось добиться больших результатов, которые появились вследствие наблюдения за бросанием костей. Именно этот инструмент помог вывести первые внятные формулы.

    Единомышленники

    Нельзя не упомянуть о таком человеке, как Христиан Гюйгенс, в процессе изучения темы, носящей название "теория вероятности" (вероятность события освещается именно в этой науке). Данная персона очень интересна. Он, так же как и представленные выше ученые, пытался в виде математических формул вывести закономерность случайных событий. Примечательно, что делал он это не совместно с Паскалем и Ферма, то есть все его труды никак не пересекались с этими умами. Гюйгенс вывел

    Интересен тот факт, что его работа вышла задолго до результатов трудов первооткрывателей, а точнее, на двадцать лет раньше. Среди обозначенных понятий известнее всего стали:

    • понятие вероятности как величины шанса;
    • математическое ожидание для дискретных случаев;
    • теоремы умножения и сложения вероятностей.

    Также нельзя не вспомнить который тоже внес весомый вклад в изучении проблемы. Проводя свои, ни от кого не зависящие испытания, он сумел представить доказательство закона больших чисел. В свою очередь, ученые Пуассон и Лаплас, которые работали в начале девятнадцатого столетия, смогли доказать изначальные теоремы. Именно с этого момента для анализа ошибок в ходе наблюдений начали использовать теорию вероятностей. Стороной обойти данную науку не смогли и русские ученые, а точнее Марков, Чебышев и Дяпунов. Они, исходя из проделанной работы великих гениев, закрепили данный предмет в качестве раздела математики. Трудились эти деятели уже в конце девятнадцатого столетия, и благодаря их вкладу, были доказаны такие явления, как:

    • закон больших чисел;
    • теория цепей Маркова;
    • центральная предельная теорема.

    Итак, с историей зарождения науки и с основными персонами, повлиявшими на нее, все более или менее понятно. Сейчас же пришло время конкретизировать все факты.

    Основные понятия

    Перед тем как касаться законов и теорем, стоит изучить основные понятия теории вероятностей. Событие в ней занимает главенствующую роль. Данная тема довольно объемная, но без нее не удастся разобраться во всем остальном.

    Событие в теории вероятности - этолюбая совокупность исходов проведенного опыта. Понятий данного явления существует не так мало. Так, ученый Лотман, работающий в этой области, высказался, что в данном случае речь идет о том, что «произошло, хотя могло и не произойти».

    Случайные события (теория вероятности уделяет им особое внимание) - это понятие, которое подразумевает абсолютно любое явление, имеющее возможность произойти. Или же, наоборот, этот сценарий может не случиться при выполнении множества условий. Также стоит знать, что захватывают весь объем произошедших явлений именно случайные события. Теория вероятности указывает на то, что все условия могут повторяться постоянно. Именно их проведение получило название "опыт" или же "испытание".

    Достоверное событие - это то явление, которое в данном испытании на сто процентов произойдет. Соответственно, невозможное событие - это то, которое не случится.

    Совмещение пары действий (условно случай A и случай B) есть явление, которое происходит одновременно. Они обозначаются как AB.

    Сумма пар событий А и В - это С, другими словами, если хотя бы одно из них произойдет (А или В), то получится С. Формула описываемого явления записывается так: С = А + В.

    Несовместные события в теории вероятности подразумевают, что два случая взаимно исключают друг друга. Одновременно они ни в коем случае не могут произойти. Совместные события в теории вероятности - это их антипод. Здесь подразумевается, что если произошло А, то оно никак не препятствует В.

    Противоположные события (теория вероятности рассматривает их очень подробно) просты для понимания. Лучше всего разобраться с ними в сравнении. Они почти такие же, как и несовместные события в теории вероятности. Но их отличие заключается в том, что одно из множества явлений в любом случае должно произойти.

    Равновозможные события - это те действия, возможность повтора которых равна. Чтобы было понятней, можно представить бросание монеты: выпадение одной из ее сторон равновероятно выпадению другой.

    Благоприятствующее событие легче рассмотреть на примере. Допустим, есть эпизод В и эпизод А. Первое - это бросок игрального кубика с появлением нечетного числа, а второе - появление числа пять на кубике. Тогда получается, что А благоприятствует В.

    Независимые события в теории вероятности проецируются только на два и больше случаев и подразумевают независимость какого-либо действия от другого. Например, А - выпадение решки при бросании монеты, а В - доставание валета из колоды. Они и есть независимые события в теории вероятности. С этим моментом стало понятнее.

    Зависимые события в теории вероятности также допустимы лишь для их множества. Они подразумевают зависимость одного от другого, то есть явление В может произойти только в том случае, если А уже произошло или же, наоборот, не произошло, когда это - главное условие для В.

    Исход случайного эксперимента, состоящего из одного компонента, - это элементарные события. Теория вероятности поясняет, что это такое явление, которое совершилось лишь единожды.

    Основные формулы

    Итак, выше были рассмотрены понятия "событие", "теория вероятности", определение основным терминам этой науки также было дано. Сейчас же пришло время ознакомиться непосредственно с важными формулами. Эти выражения математически подтверждают все главные понятия в таком непростом предмете, как теория вероятности. Вероятность события и здесь играет огромную роль.

    Начать лучше с основных И перед тем как приступить к ним, стоит рассмотреть, что это такое.

    Комбинаторика - это в первую очередь раздел математики, он занимается изучением огромного количества целых чисел, а также различных перестановок как самих чисел, так и их элементов, различных данных и т. п., ведущих к появлению ряда комбинаций. Помимо теории вероятности, эта отрасль важна для статистики, компьютерной науки и криптографии.

    Итак, теперь можно переходить к представлению самих формул и их определению.

    Первой из них будет выражение для числа перестановок, выглядит оно следующим образом:

    P_n = n ⋅ (n - 1) ⋅ (n - 2)…3 ⋅ 2 ⋅ 1 = n!

    Применяется уравнение только в том случае, если элементы различаются лишь порядком расположения.

    Теперь будет рассмотрена формула размещения, выглядит она так:

    A_n^m = n ⋅ (n - 1) ⋅ (n-2) ⋅ ... ⋅ (n - m + 1) = n! : (n - m)!

    Это выражение применимо уже не только лишь к порядку размещения элемента, но и к его составу.

    Третье уравнение из комбинаторики, и оно же последнее, называется формулой для числа сочетаний:

    C_n^m = n ! : ((n - m))! : m !

    Сочетанием называются выборки, которые не упорядочены, соответственно, к ним и применяется данное правило.

    С формулами комбинаторики получилось разобраться без труда, теперь можно перейти к классическому определению вероятностей. Выглядит это выражение следующим образом:

    В данной формуле m - это число условий, благоприятствующих событию A, а n - число абсолютно всех равновозможных и элементарных исходов.

    Существует большое количество выражений, в статье не будут рассмотрены все, но затронуты будут самые важные из них такие, как, например, вероятность суммы событий:

    P(A + B) = P(A) + P(B) - эта теорема для сложения только несовместных событий;

    P(A + B) = P(A) + P(B) - P(AB) - а эта для сложения только совместимых.

    Вероятность произведения событий:

    P(A ⋅ B) = P(A) ⋅ P(B) - эта теорема для независимых событий;

    (P(A ⋅ B) = P(A) ⋅ P(B∣A); P(A ⋅ B) = P(A) ⋅ P(A∣B)) - а эта для зависимых.

    Закончит список формула событий. Теория вероятностей рассказывает нам о теоремеБайеса, которая выглядит так:

    P(H_m∣A) = (P(H_m)P(A∣H_m)) : (∑_(k=1)^n P(H_k)P(A∣H_k)),m = 1,...,n

    В данной формуле H 1 , H 2 , …, H n - это полная группа гипотез.

    Примеры

    Если тщательно изучить любой раздел математики, в нем не обходится без упражнений и образцов решений. Так и теория вероятности: события, примеры здесь являются неотъемлемым компонентом, подтверждающим научные выкладки.

    Формула для числа перестановок

    Допустим, в карточной колоде есть тридцать карт, начиная с номинала один. Далее вопрос. Сколько есть способов сложить колоду так, чтобы карты с номиналом один и два не были расположены рядом?

    Задача поставлена, теперь давайте перейдем к ее решению. Для начала нужно определить число перестановок из тридцати элементов, для этого берем представленную выше формулу, получается P_30 = 30!.

    Исходя из этого правила, мы узнаем, сколько есть вариантов сложить колоду по-разному, но нам необходимо вычесть из них те, в которых первая и вторая карта будут рядом. Для этого начнем с варианта, когда первая находится над второй. Получается, что первая карта может занять двадцать девять мест - с первого по двадцать девятое, а вторая карта со второго по тридцатое, получается всего двадцать девять мест для пары карт. В свою очередь, остальные могут принимать двадцать восемь мест, причем в произвольном порядке. То есть для перестановки двадцати восьми карт есть двадцать восемь вариантов P_28 = 28!

    В итоге получается, что если рассматривать решение, когда первая карта находится над второй, лишних возможностей получится 29 ⋅ 28! = 29!

    Используя этот же метод, нужно вычислить число избыточных вариантов для того случая, когда первая карта находится под второй. Получается также 29 ⋅ 28! = 29!

    Из этого следует, что лишних вариантов 2 ⋅ 29!, в то время как необходимых способов сбора колоды 30! - 2 ⋅ 29!. Остается только лишь посчитать.

    30! = 29! ⋅ 30; 30!- 2 ⋅ 29! = 29! ⋅ (30 - 2) = 29! ⋅ 28

    Теперь нужно перемножать между собой все числа от одного до двадцати девяти, после чего в конце умножить все на 28. Ответ получается 2,4757335 ⋅〖10〗^32

    Решение примера. Формула для числа размещения

    В данной задаче необходимо выяснить, сколько есть способов, чтобы поставить пятнадцать томов на одной полке, но при условии, что всего томов тридцать.

    В этой задаче решение немного проще, чем в предыдущей. Используя уже известную формулу, необходимо вычислить суммарное число расположений из тридцати томов по пятнадцать.

    A_30^15 = 30 ⋅ 29 ⋅ 28⋅... ⋅ (30 - 15 + 1) = 30 ⋅ 29 ⋅ 28 ⋅ ... ⋅ 16 = 202 843 204 931 727 360 000

    Ответ, соответственно, будет равен 202 843 204 931 727 360 000.

    Теперь возьмем задачу чуть сложнее. Необходимо узнать, сколько есть способов расставить тридцать книг на двух книжных полках, при условии, что на одной полке могут находиться лишь пятнадцать томов.

    Перед началом решения хотелось бы уточнить, что некоторые задачи решаются несколькими путями, так и в этой есть два способа, но в обоих применена одна и та же формула.

    В этой задаче можно взять ответ из предыдущей, ведь там мы вычислили, сколько раз можно заполнить полку на пятнадцать книг по-разному. Получилось A_30^15 = 30 ⋅ 29 ⋅ 28 ⋅ ... ⋅ (30 - 15 + 1) = 30 ⋅ 29 ⋅ 28 ⋅ ...⋅ 16.

    Вторую же полку рассчитаем по формуле перестановки, ведь в нее помещается пятнадцать книг, в то время как всего остается пятнадцать. Используем формулу P_15 = 15!.

    Получается, что в сумме будет A_30^15 ⋅ P_15 способов, но, помимо этого, произведение всех чисел от тридцати до шестнадцати надо будет умножить на произведение чисел от одного до пятнадцати, в итоге получится произведение всех чисел от одного до тридцати, то есть ответ равен 30!

    Но эту задачу можно решить и по-иному - проще. Для этого можно представить, что есть одна полка на тридцать книг. Все они расставлены на этой плоскости, но так как условие требует, чтобы полок было две, то мы одну длинную пилим пополам, получается две по пятнадцать. Из этого получается что вариантов расстановки может быть P_30 = 30!.

    Решение примера. Формула для числа сочетания

    Сейчас будет рассмотрен вариант третьей задачи из комбинаторики. Необходимо узнать, сколько способов есть, чтобы расставить пятнадцать книг при условии, что выбирать необходимо из тридцати абсолютно одинаковых.

    Для решения будет, конечно же, применена формула для числа сочетаний. Из условия становится понятным, что порядок одинаковых пятнадцати книг не важен. Поэтому изначально нужно выяснить общее число сочетаний из тридцати книг по пятнадцать.

    C_30^15 = 30 ! : ((30-15)) ! : 15 ! = 155 117 520

    Вот и все. Используя данную формулу, в кратчайшее время удалось решить такую задачу, ответ, соответственно, равен 155 117 520.

    Решение примера. Классическое определение вероятности

    С помощью формулы, указанной выше, можно найти ответ в несложной задаче. Но это поможет наглядно увидеть и проследить ход действий.

    В задаче дано, что в урне есть десять абсолютно одинаковых шариков. Из них четыре желтых и шесть синих. Из урны берется один шарик. Необходимо узнать вероятность доставания синего.

    Для решения задачи необходимо обозначить доставание синего шарика событием А. Данный опыт может иметь десять исходов, которые, в свою очередь, элементарные и равновозможные. В то же время из десяти шесть являются благоприятствующими событию А. Решаем по формуле:

    P(A) = 6: 10 = 0,6

    Применив эту формулу, мы узнали, что возможность доставания синего шарика равна 0,6.

    Решение примера. Вероятность суммы событий

    Сейчас будет представлен вариант, который решается с использованием формулы вероятности суммы событий. Итак, в условии дано, что есть два ящика, в первом находится один серый и пять белых шариков, а во втором - восемь серых и четыре белых шара. В итоге из первого и второго короба взяли по одному из них. Необходимо узнать, каков шанс того, что доставаемые шарики будут серого и белого цвета.

    Чтобы решить данную задачу, необходимо обозначить события.

    • Итак, А - взяли серый шарик из первого ящика: P(A) = 1/6.
    • А’ - взяли белый шарик также из первого ящика: P(A") = 5/6.
    • В - извлекли серый шарик уже из второго короба: P(B) = 2/3.
    • В’ - взяли серый шарик из второго ящика: P(B") = 1/3.

    По условию задачи необходимо, чтобы случилось одно из явлений: АВ’ или же А’В. Используя формулу, получаем: P(AB") = 1/18, P(A"B) = 10/18.

    Сейчас была использована формула по умножению вероятности. Далее, чтобы узнать ответ, необходимо применить уравнение их сложения:

    P = P(AB" + A"B) = P(AB") + P(A"B) = 11/18.

    Вот так, используя формулу, можно решать подобные задачи.

    Итог

    В статье была представлена информация по теме "Теория вероятности", вероятность события в которой играет важнейшую роль. Конечно же, не все было учтено, но, исходя из представленного текста, можно теоретически ознакомиться с данным разделом математики. Рассматриваемая наука может пригодиться не только в профессиональном деле, но и в повседневной жизни. С ее помощью можно просчитать любую возможность какого-либо события.

    В тексте были затронуты также знаменательные даты в истории становления теории вероятности как науки, и фамилии людей, чьи труды были в нее вложены. Вот так человеческое любопытство привело к тому, что люди научились просчитывать даже случайные события. Когда-то они просто заинтересовались этим, а сегодня об этом уже знают все. И никто не скажет, что ждет нас в будущем, какие еще гениальные открытия, связанные с рассматриваемой теорией, будут совершены. Но одно можно сказать точно - исследования на месте не стоят!