Расчет системы аспирации с циклонами пример. Пример компоновки и расчета аспирационной системы

При разработке технологической части проекта должны комплексно решаться вопросы аспирации и обеспыливания технологического оборудования с обеспечением соответствующих санитарных норм.

При проектировании пылеулавливающих установок для очистки отходящих газов и аспирационного воздуха, выбрасываемых в атмосферу, необходимо учитывать скорости воздухе или газа в аппаратах; физико-химические свойства и гранулометрический состав пыли, начальную запыленность газа или воздуха, вид ткани для рукавных фильтров, температуру и влажность пыли. Количество отходящих газов и аспирационного воздуха от технологических установок определяется расчетным путем при проектировании.

Таким образом, для аспирационной системы мельницы :

Q = 3600·S·V м = 3600· ·V м, (5)

где Q - количество воздуха, проходящего через мельницу за 1 час S - площадь поперечного сечения мельницы; V м - скорость движения воздуха внутри мельницы с учетом подсосов в системе; D - диаметр мельницы.

Температура отходящих газов и аспирационного воздуха (не менее) - 150ºС. V м = 3,5 – 6,0 м/с. Тогда:

Запыленность 1 м 3 отходящих газов и аспирационного воздуха – 131 г. Допустимые концентрации пыли в очищенных газах и воздухе не должны превышать 50 мг/м 3 .

Для очистки аспирационного воздуха, отходящего от шаровой мельницы, принимаем двухступенчатую систему очистки:

1. Циклон ЦН-15, степень очистки 80-90%:

¾ 1 батарея: 262 - 262·0,8 = 52,4 г/м 3 ;

¾ 2 батарея: 52,4 - 52,4·0,8 = 10,48 г/м 3 ;

¾ 3 батарея: 10,48 - 10,48·0,8 = 2,096 г/м 3 ;

¾ 4 батарея: 2,096 - 2,096·0,8 = 0,419 г/м 3 .

2. Электрофильтр Ц-7,5СК, степень очистки 85-99%:

0,419 - 0,419·0,99 = 0,00419 г/м 3 .

Пылеосадительное устройства. Циклон ЦН-15

Циклоны предназначены для очистки запыленного воздуха от взвешенных в нем твердых частиц (пыли) и работают при температуре не выше 400°С.

Рисунок 8 – Группа из двух циклонов ЦН-15

Выбор пылеосадительного устройства для подачи продукта:

Q = 3600· ·V м = 3600· ·5 = 127170/4 = 31792,5 м 3 /ч.

Технологический расчет может быть произведен по формуле:

М = Q/q = 31792,5/20000 = 1,59 (принимаем 2шт.)

Тогда действительный коэффициент загрузки оборудования по времени: К в = 1,59/2 = 0,795.

Таблица 19 - Техническая характеристика группы из двух циклонов ЦН-15

Электрофильтр

Электрофильтр Ц-7,5СК предназначен для обеспыливания газов, отходов из сушильных барабанов, а также для обеслыливания воздуха и газов, отсасываемых из мельниц .

Для удаления осевшей на электродах пыли, нахожящихся в электрофильтре, их встряхивают с помощью механизма встряхивания. Пыль, отделенная от электродов, попадает в сборные бункера и удаляется через шлюзовые затворы.

Электрофильтр уменьшает концентрацию пыли в воздухе на 33,35%, при этом выпуская в атмосферу 1,75 грамм на куб. метр.

Таблица 20 - Техническая характеристика электрофильтра Ц-7,5СК

Показатели Габариты и параметры
Степень очистки воздуха и газов от пыли в % 95 – 98
Максимальная скорость газов в м/сек
Температура газов на входе в электрофильтр в °С 60-150
Температура газов на выходе из электрофильтра Не более чем на 25 °С выше их точки росы
Сопротивление электрофильтра в мм вод. ст. Не более 20
Допускаемое давление или разрежение в электрофильтре в мм вод. ст.
Начальная запыленность газа в г/м 3 не более
Площадь активного сечения электрофильтра в м 3 7,5
Количество электродов в двух полях:
осадительных
коронирующих
Электродвигатель механизма встряхивания:
тип АОЛ41-6
мощность в кВт
Окончание таблицы 20
Показатели Габариты и параметры
число оборотов в 1 мин
Электродвигатель шлюзового затвора:
тип АО41-6
мощность в кВт 1,7
число оборотов в 1 мин
Мощность нагревательных элементов для 8 изоляторов в кВт 3,36
Питание электродов током высокого напряжения производится от электроагрегата типа АФА-90-200
Номинальная мощность трансформатора в кВа
Номинальный выпрямленный ток в ма
Номинальное выпрямленное напряжение в кВ
Габаритные размеры в мм:
длина
ширина (без привода механизма встряхивания)
высота (без шлюзового затвора)
Вес в т 22,7
Завод-изготовитель Павшинский механический завод Московского областного совнархоза

Вентилятор

Вентиляторы центробежные высокого давления типа ВВД предназначены для перемещения воздуха в системах приточно-вытяжной вентиляции промышленных зданий при суммарной потере полного давления до 500 сек/м 2 . Вентиляторы изготавливаются как правого, так и левого вращения и поставляются комплектно с электродвигателями.

В настоящее время аспирационные системы довольно распространены, так как с каждым днем развитие промышленности только усиливается.

Общие сведения

Фильтровальные установки с - это общие системы, которые наиболее распространены. Они предназначаются для фильтрации воздуха, в котором содержатся твердые частицы, размер которых достигает 5 мкм. Степень очистки у таких аспирационных систем 99,9%. Также стоит отметить, что конструкция данной фильтровальной установки, имеющей накопительный бункер, позволяет применять ее для монтажа в традиционных системах очистки воздуха, которые обладают разветвленной системой воздуховода, а также вытяжным вентилятором высокой мощности.

Центральный накопитель в таких системах применяется для того, чтобы хранить, а также дозировать и выдавать измельченные отходы деревообработки. Производство данного бункера осуществляется с объемом от 30 до 150 м 3 . Кроме того, аспирационной системы комплектуется такими деталями, как шлюзовые перегрузчики или же шнеки, взрыво- пожарозащитная система, система, контролирующая уровень наполнения бункера.

Модульные системы

Существует также модульная система аспирации воздуха, которая предназначается для следующих целей:

  • Обеспечить полное и надежное обеспыливание воздуха в производственном помещении на том уровне, который предписан нормативными положениями.
  • Наиболее важная задача - защита атмосферного воздуха от его загрязнения со стороны предприятия.
  • Также эта система предназначается для удаления деревообрабатывающих отходов производства от технологического оборудования в виде смеси воздуха и пыли, а также последующей подачи данной смеси в пылеулавливающие аппараты.
  • Модульная система предназначается и для того, чтобы организовать отход выбросов от места очистки воздуха к месту его утилизации. Она может функционировать в полностью автоматическом режиме.
  • Последняя функция, которую выполняет эта система - это дозированная подача опилок к топливному бункеру. Данная операция также может функционировать в полностью автоматическом режиме, но и ручной также присутствует.

Оборудование для расчета

Для того чтобы провести расчет аспирационной системы, сначала необходимо объединить ее в общую сеть. В такие сети входит:

  1. Оборудование, которое функционирует одновременно.
  2. Оборудование, которое располагается близко друг к другу.
  3. Оборудование с одинаковой пылью или же близкой по качеству, а также свойствам.
  4. Последнее, что нужно учесть, - это оборудование с близкой либо одинаковой температурой воздуха.

Также стоит отметить, что оптимальное число точек отсоса для одной аспирационной системы равно шести. Однако большее количество возможно. Важно знать, что при наличии оборудования, которое работает с постоянно изменяющимся потоком воздуха, необходимо спроектировать для этого устройства отдельную систему аспирации или же добавить в уже имеющуюся малое количество "попутных" точек отсоса (одну или же две с малым расходом).

Расчет воздуха

Для важно провести точные расчеты. Первое, что определяется при таких расчетах - это расход воздуха на аспирацию, а также потери давления. Такие расчеты проводятся для каждой машины, емкости или же точки. Данные чаще всего можно взять из паспортной документации на объект. Однако разрешается использовать ии и из аналогичных расчетов с таким же оборудованием, если таковые имеются. Также расход воздуха вполне можно определить и по диаметру патрубка, который отсасывает его или же по отверстию в корпусе аспирационной машины.

Важно добавить, что возможно эжектирование воздуха, поступающего в продукт. Такое случается если, к примеру, воздух двигается по самотечной трубе с большой скоростью. В этом случае возникают дополнительные его расходы, которые также должны быть учтены. Кроме этого, в некоторых аспирационных системах случается и так, что определенное количество воздуха уходит вместе с отводящимися продуктами после очистки. Это количество также должно быть прибавлено к расходному.

Расчет расхода

После проведения всех работ по определению расхода воздуха и возможному эжектированию, необходимо сложить все полученные числа, а после этого разделить сумму на объем помещения. Стоит учитывать, что нормальный обмен воздуха для каждого предприятия свой, но чаще всего этот показатель находится в пределах от 1 до 3 циклов аспирации в час. Большее количество чаще всего применяется для расчетов установки систем в помещениях с общеобменной Данный тип обмена воздуха используется на предприятиях для удаления вредных испарений из помещения, для удаления примесей или же неприятных запахов.

При установке аспирационной системы может создаваться повышенной вакуум из-за постоянного отсоса воздуха из помещения. По этой причине необходимо предусмотреть установку в него притока наружного воздуха.

Пожарная аспирация

В настоящее время аспирационная пожарная система считается наилучшим средством защиты помещения. Действенным способом оповещения в этом случае считается аспирационная с ультрачувствительными лазерными Идеальное место применения таких систем - это архивы, музеи, серверные, коммутаторные помещения, центры управления, больничные помещения с высокотехнологичным оборудованием, "чистые" промышленные зоны и т.д.

Другими словами, аспирационная система пожарной сигнализации такого типа применяется в помещениях, которые представляют особую ценность, в которых хранятся материальные ценности или же, внутри которых установлено большое количество дорогостоящего оборудования.

Закрытая аспирационная система

Предназначение ее заключается в следующем: проведение санации трахеобронхиального дерева при условиях искусственной вентиляции легких и при сохранении асептики. Другими словами, они применяются врачами для проведения сложных операций. Данная система включает в себя следующее:

  • Конструкция устройства выполнена полностью из полиэтилена, поливинилхлорида, полипропилена. Содержание латекса в ней равно нулю.
  • Устройство содержит вертлюжный угловой разъем, размер которого полностью стандартизирован, а также обладает подвижным внутренним кольцом. Наличие данной детали обеспечивает надежное соединение с коннектором.
  • Система снабжается защитным чехлом для санационного катетера, который предназначен для содержания этой детали в герметичных условиях.
  • Размеры катетера закодированы при помощи цветной маркировки.

Виды систем

В настоящее время существует довольно широкая классификация видов фильтровальных систем. Некоторые компании, такие как "Фолтер", занимаются производством аспирационных систем практически любого вида.

Первое разделение систем осуществляется по характеру циркуляции воздуха. По этому признаку всех их можно разделить на два вида: рециркуляционные и прямоточные. Первый класс систем обладает таким существенным отличием, как возвращение отобранного воздуха из помещения обратно, после прохождения полного процесса очистки. То есть никаких выбросов в атмосферу не производит. Из этого преимущества вытекает еще одно - высокая экономия на отоплении, так как нагретый воздух не покидает помещение.

Если же говорить о втором типе систем, то их принцип действия полностью отличается. Данная фильтровальная установка полностью забирает воздух из помещения, после чего осуществляет его полную очистку, в частности от таких веществ, как пыль и газ, после чего весь забранный воздух выбрасывается в атмосферу.

Монтаж аспирационных систем

Для того чтобы начать этап установки фильтрационной системы, сначала проводят проектировочные работы. Данный процесс является очень важным, а потому ему уделяется особое внимание. Сразу важно сказать, что неверно проведенный этап проектирования и расчета не сможет обеспечить необходимую очистку и циркуляции воздуха, что приведет к плохим последствиям. Для успешного составления проекта и последующей установки системы необходимо учесть несколько пунктов:

  1. Важно определить количество расходуемого воздуха на один цикл аспирации, а также потерю давления в каждом месте его забора.
  2. Важно верно определить вид пылеуловителя. Для этого нужно правильно подобрать его по его же параметрам.

Проведение расчетов и составление проекта - это не полный список того, что необходимо сделать прежде, чем начать процесс монтажа системы. Другими словами можно сказать, что установка фильтров - это наиболее простое и последнее дело, за которое берутся профессионалы.

Аспирационные системы используют в самых разных отраслях промышленности, там, где воздух загрязняется мусором, пылью и вредными веществами. Современное деревообрабатывающее, пищевое, химическое производство невозможно представить без такого оборудования, как эффективная, современная и надежная система аспирации.

Также она является обязательным элементом в металлообработке, металлургии, горнодобывающей промышленности. Требования к экологическому состоянию производства постоянно возрастают, поэтому требуются все более совершенные аспирационные системы. Без использования этого оборудования было бы невозможно не только находиться внутри производственного помещения, но и на улице вблизи многих промышленных предприятий.

Типы систем

В настоящее время на предприятиях производят расчет и монтаж аспирационных систем моноблочного или модульного типа.

  1. Моноблочная конструкция. Моноблочная система является абсолютно автономной и мобильной. Ее устанавливают рядом с оборудованием, которое нуждается в сборе отходов. Составные части моноблочной системы - вентилятор, фильтр, емкость для отходов.
  2. Модульная конструкция. Модульные аспирационные системы - сложные конструкции, изготавливаемые по индивидуальному заказу под конкретные требования заказчика. В их состав могут входить воздуховоды для систем аспирации, вентиляторы низкого давления, сепараторы. Такие конструкции могут работать как в пределах одного цеха, так и проектироваться для большого завода.

Также аспирационные системы делятся на прямоточные и рециркуляционные. Разница в том, что первые после захвата грязного воздуха очищают его и выбрасывают в атмосферу, а вторые после очистки возвращают воздух обратно в цех.

Перед монтажом аспирационных комплексов проводят их разработку, которая обязательно включает в себя составление плоскостной схемы исходя из требуемой мощности. При правильном расчете система может не только очистить цех от пыли и вредных веществ, но и вернуть в него теплый и чистый воздух, тем самым снизив расходы на отопление.

Основные компоненты системы

  • Циклон. Использует центробежную силу для того чтобы убрать из воздуха твердые частички пыли. Частички прижимаются к стенкам, затем оседают в выгрузном отверстии.
  • Крышные фильтры. Представляют собой блок фильтров и приемную камеру. Очищают воздух, затем возвращают его внутрь помещения. Эти насадки ставят на наружные бункеры и используют вместо уличных циклонов.
  • Уловители пыли и стружки. Применяются на предприятиях, которые занимаются деревообработкой.
  • Фильтрованные рукава. Внутри этих рукавов выделяются твердая составляющая воздушно-пыльной массы, иными словами воздух отделяется от загрязнений.

Применение рукавных фильтров - очень эффективный способ очистки, благодаря которому улавливается до 99.9% частиц, размер которых больше 1 мкм. А из-за использования импульсной очистки фильтров работает она максимально эффективно, что позволяет экономить электроэнергию.

Монтаж установок аспирации не требует изменения технологических процессов. Поскольку очистные конструкции делаются на заказ, они приспосабливаются к существующим техпроцессам и вписываются в существующее технологическое оборудование, применяемое, например, при деревообработке. Именно благодаря точному расчету и привязке к конкретным условиям достигается высокая эффективность работы.

Отходы удаляются из специальных бункеров с помощью контейнеров, мешков или пневмотранспорта.

Разработкой и монтажом очистных комплексов занимаются многие компании. При выборе фирмы внимательно изучите предложения, основываясь не только на рекламных материалах. Только подробный разговор о характеристиках оборудования со специалистами может помочь сделать вывод о добросовестности поставщика.

Расчет системы

Для того чтобы работа аспирационной системы была эффективной необходимо сделать правильный ее расчет. Поскольку дело это непростое, то заниматься этим должны специалисты с большим опытом.

Если расчеты сделаны неверно, то система не будет нормально работать, а на переделку уйдет много средств. Поэтому чтобы не рисковать временем и деньгами лучше доверить это дело специалистам, для которых проектирование систем аспирации и пневмотранспорта – основная работа.

При расчетах необходимо учесть массу факторов. Рассмотрим лишь некоторые из них.

  • Определяем расход воздуха и потери давления в каждой точке аспирации. Все это можно узнать в справочной литературе. После определения всех расходов проводят расчет - нужно их суммировать и разделить на объем помещения.
  • Из справочной литературы нужно взять сведения о скорости воздуха в аспирационной системе для разных материалов.
  • Определяется тип пылеуловителя. Это можно сделать, имея данные о пропускной производительности конкретного пылеулавливающего устройства. Чтобы рассчитать производительность нужно сложить расход воздуха во всех точках аспирации и увеличить полученное значение на 5 процентов.
  • Рассчитать диаметры воздуховодов. Делается это с помощью таблицы с учетом скорости движения воздуха и его расхода. Диаметр определяется индивидуально для каждого участка.

Даже этот небольшой список факторов говорит о сложности расчета аспирационной системы. Есть и более сложные показатели, с расчетом которых справится только человек со специализированным высшим образованием и опытом работы.

Аспирация просто необходима в условиях современного производства. Он позволяет соответствовать экологическим требованиям и сохранить здоровье персонала.

2. Расчетная часть 6

2.1. Методика расчета 6

2.1.1. Последовательность расчета 6

2.1.2. Определение потерь давления в воздуховоде 7

2.1.3. Определение потерь давления в коллекторе 8

2.1.4. Расчет пылеулавливающего аппарата 9

2.1.5. Расчет материального баланса процесса пылеулавливания 11

2.1.6. Выбор вентилятора и электродвигателя 12

2.2. Пример расчета 13

2.2.1. Аэродинамический расчет сети аспирации (от местного отсоса до коллектора включительно) 13

2.2.2. Увязка сопротивлений участков 19

2.2.3. Расчет потерь давления в коллекторе 22

2.2.4. Расчет пылеулавливающего аппарата 23

2.2.5. Расчет участков 7 и 8 до установки вентилятора 25

2.2.6. Выбор вентилятора и электродвигателя 28

2.2.7. Уточнение сопротивлений участков 7 и 8 29

2.2.8. Материальный баланс процесса пылеулавливания 31

Библиографический список 32

Приложение 1 33

Приложение 2 34

Приложение 3 35

Приложение 4 36

Приложение 5 37

Приложение 6 38

Приложение 7 39

Приложение 8 40

Приложение 9 41

Приложение 10 42

Приложение 11 43

Приложение 12 44

Приложение 13 46

Приложение 14 48

1. Общие положения

В процессах обработки древесины на деревообрабатывающих станках образуется большое количество как крупных частиц – отходов производства (стружка, щепа, кора), так и более мелких (опилки, пыль). Особенностью данного технологического процесса является значительная скорость, сообщаемая образующимся частицам при воздействии режущего инструмента на обрабатываемый материал, а также большая интенсивность пылеобразования. Поэтому практически все деревообрабатывающие станки оборудованы вытяжными устройствами, которые принято называть местными отсосами.

Система, объединяющая местные отсосы, воздуховоды, коллектор (сборник, к которому подсоединяются воздуховоды - ответвления), пылеулавливающий аппарат и вентилятор, называется аспирационной системой .

Совокупность воздуховодов - ответвлений, подсоединенных к коллектору, называется узлом .

На деревообрабатывающих участках, оборудованных станками, применяются коллекторы различных конструкций (рис.1). Характеристики некоторых видов коллекторов приведены в табл. 1.

Для перемещения образующихся отходов (например, из бункеров хранения отходов к топливным бункерам котельной) используется система пневматического транспорта, ее отличие от аспирационной системы заключается в том, что функции местного отсоса выполняет загрузочная воронка.

Важнейшей характеристикой, используемой при расчетах систем аспирации и пневмотранспорта, является массовая концентрация запыленного воздуха (М, кг/кг) . Массовая концентрация – это отношение количества перемещаемого материала к количеству транспортирующего его воздуха:

Рис. 1. Виды коллекторов:

а) вертикальный коллектор с нижним отводом (барабанный)

б) вертикальный коллектор с верхним отводом ("люстра") в) горизонтальный коллектор

Таблица 1

Характеристика коллекторов

Минимальное количество отводимого воздуха, м³/ч

Входные патрубки

Выходной патрубок

коли-чество

вх

диаметр (размер сечения), мм

коэффициент местного сопротивления ζвых

коллекторы горизонтальные

Дэ = 339 (300х300)

Дэ = 339 (300х300)

Дэ = 391 (400х300)

коллекторы вертикальные

а) с верхним вводом (с нижним отводом)

б) с нижним вводом (с верхним отводом)

кг/кг, (1)

где G Σ n – суммарный массовый расход перемещаемого материала, кг/ч;

L Σ – суммарное количество воздуха, требуемое для перемещения материала (объемный расход), м 3 /ч;

ρ в – плотность воздуха, кг/м 3 . При температуре 20°С и атмосферном давлении В = 101,3 кПа, ρ в = 1,21 кг/м 3 .

При проектировании аспирационных систем важное место занимает аэродинамический расчет, заключающийся в выборе диаметров воздуховодов, подборе коллектора, определении скоростей на участках, расчете и последующей увязке потерь давления на участках, определении суммарного сопротивления системы.

Рассмотрим принципиальные аспирационные транспортно–технологические системы предприятий стройиндустрии. Состав оборудования линии приемки сыпучего сырья включает бункер, конвейер, норию, конвейер. Пылевоздушные потоки образуются в основном на следующих участках: бункер – конвейер, конвейер – нория, нория - самотечном трубопроводе на участе нория - цепной конвейер. Соответственно этому в укрытиях образуются зоны повышенного и пониженного давления воздуха.

На Рис. 2.3 показана схема подключения к аспирационной системе оборудования участка приема супучего сырья.

Отсос воздуха можно осуществлять двумя способами: первый – подключить к аспирационной сети все места повышенного давления: бункер, конвейер, норию, цепной конвейер; второй - подключить к аспирационной сети бункер, башмак и головку нории, конвейер. При втором способе протяженность воздуховодов существенно уменьшается, а количество пыли, увлекаемой аспирационным воздуховодом, снижается, что обуславливает предпочтительность вторго способа.

Для нашего примера площадь живого селения решетки над приемным бункером дожна бать минимальной. Открытыми должны бать только те участки через которые сыпучий материал из транспортних средств поступает в приемный бункер. Для уменьшения площади контакта падающего потока материала с воздухом и уменьшением объема эжектируемого воздуха следует применять откидные уплотнительные щиты.

Рис.2.3 Схема подключения к аспирационной системе оборудования участка разгрузки железнонодрожного вагона: 1- железнонодрожный вагон; 2 - бункер; 3 – конвейер; 4 – нория; 5 - цепной конвейер; 6 - аспирационная сеть; 7- уплотнительные щиты.

Объем аспирируемого воздуха из приемного бункера определяют по формуле баланса прихода и расхода воздуха

При максимальном массовом расходе материала 100т/ч и высоте падения 2м см. Табл. 2.1 Lэ = 160 м³/ч; vн - скорость воздуха в отверствиях, 0.2м/с; Fн–площадь неплотностей приемного бункера, 3м²; Gм – объемная масса материала, 46м³; t – время разгрузки, 180с; получим:

Lа бун = 160 + ((0,2 * 3)*3600) + ((46 / 180)*3600) = 3240 м³/ч

Значения объемов аспирируемого воздуха из нории НЦ-100 (рабочая и холостая трубы) и цепногно конвейера ТСЦ-100 получены из нормативной документации :

Lа нор. раб.= 450 м³/ч; Lа нор. хол.= 450 м³/ч; Lа цеп = 420 м³/ч;

Для всей аспирационной системы:

Lа = 3240 + 450 + 450 + 420 = 4560 м³/ч;

Величина давления в аспирационном патрубке приемного бункера с учетом ежекционного давления создаваемого сыпучим материалом при высоте падения 2м и насыпном лотке составляет:

На бун = 50 + 50 = 100Па

Давление в каждом из аспирационных патрубков нории с учетом ежекционного давления в сбрасывающей коробке конвейера составляет:

На нор = 30 + 50 = 80Па

Давление в аспирационного патрубка цепного конвейера с учетом ежекционного давления в наклонном самотеке до 2м и разряжении в бункере составляет:

На цеп = 50 + 50 + 30 = 130Па

Получив исходные данные и скомпоновав аспирационную систему выполним аэродинамический расчет системы производительностью

Lа = 4560 м³/ч; см. рис. 2.3, которую отображаем на плане цеха в такой последовательности:

1. Производится нанесение воздуховодов и других элементов системы аспирации на план помещения, с последующим конструированием пространственной (аксонометрической) схемы аспирации.

2. Выбирается магистральное направление движения воздуха. Магистральным считается наиболее протяженное или нагруженное направление от вентилятора до начальной точки первого участка системы.

3. Разбивается система на участки с постоянным расходом воздуха, участки нумеруются, начиная с наиболее отдалённого от вентилятора, вначале по магистрали, а затем по ответвлениям. Определяют длину участков и расход воздуха и вносят эти значения в таблицу 2.3 графы 1, 2, 3.

4. Предварительно задаёмся ориентировочной скоростью воздуха v ор, м/с, на участке 1 воздуховода (в зависимости от скорости движения воздуха для заданной пыли см. табл. 2.4). Исходя из планировочных требований принимаем форму воздуховода и материал, из которого он изготовлен (круглый, из оцинкованной стали). Потери давления в цепном конвейере, присоединенного к участку 1, заносим в табл. 2.3 первой строкой. Для определения потерь давления в участке 1 соединяем прямой линией по номограмме рис. 2.5 точки Lцеп=420 м³/ч и v =10,5 м/с на пересечении этой прямой со шкалой D находим ближайший меньший рекомендуемый диаметр D=125 мм, величины v =10,5 м/с, Hд =67 Па, λ/D=0,18 заносим в графы 3, 6, 8.

5. Производим суммирование коэффициентов местных сопротивлений на участке (тройники, отводы. и т.д.) выбранных по . Полученный результат Σ ζ записываем в графу 5.

6. Производим умножение, (1 * λ/D) заполняем графу 9, сложение (1 * λ/D + Σ ζ) заполняем графу 10 . Графу 11 (общие потери на участке) находим как произведение величин, записанных в графах 6 и 10. В графу 12 записываем сумму общих потерь на 1 участке и потерь давления в в цепном конвейере.

Аналогично проводим расчеты остальных магистральных участков.

7. По окончании расчётов суммируем полученные величины и получаем суммарные потери давления в сети, которые служат критерием для подбора вентилятора.

8. Рассчитав потери давления по магистрали, приступаем к расчёту потерь давления на ответвлениях. При расчёте которых необходимо осуществить увязку, расхождение допускается не более 10 % .

9. Увеличивать потери давления в ответвлениях можно двумя способами. Первый способ – установка в ответвлении дополнительного местного сопротивления (задвижки, диафрагмы, шайбы). Второй способ – уменьшение диаметра ответвления.

В рассматриваемом примере следует повысить сопротивление 7-го участка на величину Нс = 237- 186,7 = 50,3 Па, а 8-го на – Нс = 373 - 187,7 =185,3 Па, а 9-го на – Нс = 460 - 157,8 = 302,2 Па. На 7 и 8 участках это можно осуществить установив дополнительно местные сопротивления т.к. диаметр трубы уже 125 мм. Величину коэффициента сопротивления диафрагмы, установленной на участке 7 определяем по выражению:

ζд7 = Нс / Нд7 = 50,3 / 74,1 = 0,68 (2.10)

По этой величине на рис. 2.4 определяем глубину погружения диафрагмы в воздуховод к его диаметру – а / D = 0,36, при D =125 мм а = 43.75мм. Аналогично для участков 8 и 9: ζд8 = Нс / Нд8 = 185,3 / 74,1 = 2,5 по рис. 5.3 определяем - а / D = 0,53, при D =125 мм а = 66,3мм; ζд9 = Нс / Нд9 = 302,2 74,1 = 4.1 по рис. 2.3 определяем - а / D = 0,59, при D =315 мм а = 186мм;

Рис. 2.4 Односторонняя диафрагма (а) и сдвоенная шкала для расчета размеров (б)

Рис.2.5 Номограмма А.В.Панченко для расчета воздуховодов.

Таблица 2.3

Аэродинамический расчет воздуховодов.

Магистральные участки

Номер участка и наим. машин L м³/с v м/с l , м Σ ζ Hд, Па D, мм λ/D l * λ/D l * λ/D+Σζ Прир. пол-ного давле-ния уч-ка, Па Пол-ное давле-ние участка, Па
Цепной конв. 0,12 - - - - - - - -
Уч-к 1 0,12 10,5 0,7 0,18 0,9 1,6
Уч-к 2 0,242 10,5 0,3 0,12 0,36 0,69
Уч-к 3 0,37 0,6 74,1 0,09 0,63 1,18 87,4 460,4
Уч-к 4 1,27 11,8 0,1 88,2 0,04 0,31 0.4 34,8 495,2
Уч-к 5 1,27 11,8 0,6 88,5 0,04 0,36 0.57 50,5 545,6
Нагнетающий Уч-к 6 1,27 11,8 88,5 0,04 0,31 1,32 116,4 116,4
ответвления
Нория 0,125 - - - - - - - -
Участок 7 0,125 0,23 74,1 0,17 1,21 1,44 106,7 186,7
Нория 0,125 - - - - - - - -
Участок 8 0,125 0,2 74,1 0,17 1,25 1,45 107,7 187,7
Приёмный бункер 0,9 - - - - - - - -
Участок 9 0,9 0,18 74,1 0,06 0,6 0,78 557,8 157,8

Таблица 2.4 Значения величин для проектирования систем аспирации и пневмотранспорта

Транспортируемый материал ϒ, кг/м 3 Скорость движения воздуха в воздуховодах v, м/с Максимальная массовая концентрация смеси μ кг/кг Опытный коэфициент К
вертикальных горизонтальных
Земляная и песочная пыль, оборотная (горелая) земля, формовочная земля 0,8 0,7
Земля и песок влажные
Глина молотая 0,8 0,6
Шамот 0,8 0,6
Пыль мелкая минеральная
Пыль от матерчатых полировальных кругов
Пыль угольная 900‒1000
Пыль наждачная минеральная 15,5
Гипс, тонкомолотая известь
Шерсть:
замасленная
незамасленная
искусственная
мериносовая (замасленная и незамасленная) 0,1‒0,2
лоскут
разрыхленная и крупные очёсы
Лён:
короткое волокно
льняная костра
Снопы тресты 0,5
Хлопок-сырец, разрыхленный хлопок, крупные очесы хлопка 0,5
Опилки:
чугунные 0,8 0,85
стальные 0,8
Шлак угля с размером частиц 10‒15 мм 0,5