Передвижные душирующие установки. Стационарн.возд.души.Передвижные душирующие установки Система душирования

Воздушное душирование - наиболее эффективное мероприятие для создания на постоянных рабочих местах требуемых метеорологических условий (температуры, влажности и скорости движения воздуха). Особенно эф­фективно применение воздушных душей при значительном тепловом излучении или при открытых производственных процессах, если технологическое оборудование, выделяющее вредные вещества, не имеет укрытий или местной вытяжной вентиляции. Воздушное душирование – это струя воздуха, направленная на ограниченное рабочее место или непосредственно на рабочего.

Подвижность воздуха на рабочем месте при воздушном душировании достигает от 1 до 3,5 м/с. Душирование осуществляется специальными патрубками, при этом струя направляется на облучаемые участки тела: голову, грудь. Размер обдуваемой площади м. Душирование может осуществляться наружным необработанным воздухом, адиабатически-охлажденным воздухом или изовлажностным охлаждением. В некоторых случаях допускается использовать рециркуляционный воздух, при этом должно быть незначительное тепловое излучение и отсутствие вредных выделений.

Охлаждающий эффект воздушного душирования за­висит от разности температур тела работающего и по­тока воздуха, а также от скорости обтекания воздухом охлаждаемого тела. При смешении струи, выходящей из отверстия, с окружающим воздухом скорость, разность температур и концентрация примесей в поперечном сечении сво­бодной струи изменяются. Струя должна быть направ­лена так, чтобы по возможности предотвращалось подсасывание ею горячего или загрязненного газами возду­ха. Например, при нахождении фиксированного рабоче­го места вблизи открытого печного проема не следует располагать душирующее устройство около проема с на­правлением струи навстречу рабочему, поскольку в этом случае невозможно избежать подсасывания горячих га­зов, вследствие чего к рабочему будет поступать пере­гретый воздух. При расчете систем воздушного душирования сле­дует принимать расчетные параметры А для теплого и расчетные параметры Б для холодного периодов года. Для расчета воздушного душирования круглогодичного действия за расчетный берется теплый период, а для холодного периода определяется только температура приточного воздуха.

Системы, подающие воздух к патрубкам воздушного душирования проектируются отдельными от систем другого назначения. Расстояние от места выпуска воздуха до рабочего места следует принимать не менее 1 м. Порядок расчета

1.Задаются параметрами воздуха на рабочем месте, намечают место установки патрубка, расстояние от патрубка до рабочего места, а также задаются типом душирующего патрубка. 2.Определяем скорость воздуха на выходе из патрубка в зависимости от нормируемой подвижности воздуха в помещении , где - нормируемая подвижность воздуха, - расстояние от патрубка до рабочего места, м, - коэффициент изменения скорости, - сечение выбранного патрубка. 3.Определяем минимальную температуру на выходе из патрубка , где - нормируемая температура, - коэффициент изменения температуры. 4.Определяем расход воздуха, необходимый для подачи к патрубку .

Назначение воздушных душей. Воздушным душем называют поток воздуха, направленный на ограниченное рабочее место или непосредственно на рабочего. Особенно эффективно применение воздушных душей при тепловом облучении рабочего. В таких случаях воздушный душ устраивают на месте наиболее длительного пребывания человека, а если в работе предусмотрены кратковременные перерывы для отдыха, то и на месте отдыха. Обдувать воздухом следует верхние части туловища, как наиболее чувствительные к воздействию теплового облучения.

Скорость и температуру воздуха на рабочем месте при применении воздушных душей назначают в зависимости от интенсивности теплового облучения человека, длительности непрерывного пребывания его под облучением и температуры окружающего воздуха.

Воздушное душирование следует предусматривать на постоянных рабочих местах с интенсивностью облучения 350 Вт/м2 и более. При этом на человека можно направлять поток воздуха со скоростью о=0,5...3,5 м/с и температурой 18-24 °С в зависимости от периода1 года и интенсивности физической нагрузки.

Конструктивное выполнение воздушных душей. Воздух, выходящий из душирующего патрубка, должен омывать голову и туловище человека с равномерной скоростью и иметь одинаковую температуру.

Ось воздушного потока может быть направлена на грудь человека горизонтально или сверху под углом 45° при обеспечении на рабочем месте заданных температур и скоростей движения воздуха, а также в лицо (зону дыхания) горизонтально или сверху под углом 45° при обеспечении допустимых концентраций вредных выделений.

Расстояние от душирующего патрубка до рабочего места должно быть не менее 1 м при минимальном диаметре патрубка 0,3 м. Ширина рабочей площадки принимается равной 1 м.

По конструкции душирующие установки подразделяются на стационарные и передвижные.

Веерный агрегат типа ВА-1 . Агрегат состоит из чугунной станины, на которой смонтирован осевой вентилятор № 5 типа МЦ с электродвигателем, обечайки с коллектором и сеткой, конфузора с направляющими лопатками и обтекателем, пневматической форсунки типа ФП-1 или ФП-2 и трубопроводов с арматурой и гибкими шлангами для подвода воды и сжатого воздуха. Агрегат изготовляется с поворотом вентилятора вокруг оси станины до 60° и подъемом ствола по вертикали на 200-600 мм.

Кроме веерных агрегатов тйпа ВА применяется поворачивающийся агрегат ПАМ.-24 в виде осевого вентилятора диаметром 800 мм с электродвигателем на одном валу. Производительность агрегата 24 000 м3/ч при дальнобойности струи 20 м. Агрегат снабжен пневматической форсункой для распыления воды в потоке воздуха.

Стационарные душирующие установки подают к душирующим патрубкам как необработанный, так и обработанный (подогретый, охлажденный и увлажненный) наружный воздух. Передвижные установки подают на рабочее место воздух помещения. В подаваемом ими воздушном потоке может распыляться вода. В этом случае капельки воды, попадая на одежду и открытые части тела человека, испаряются и вызывают дополнительное охлаждение.

Душирование фиксированных рабочих мест может осуществляться душирующими патрубками различных типов. Патрубки имеют поджатое выходное сечение, шарнирное соединение для изменения направления потока воздуха в вертикальной плоскости и поворотное устройство для изменения направления потока в горизонтальной плоскости в пределах 360°. Регулирование направления воздушного потока в патрубках осуществляется в вертикальной плоскости поворотом направляющих лопаток, а в горизонтальной плоскости при помощи поворотного устройства. Патрубки ПД могут применяться как с форсунками для пневматического распыления воды, так и без них. Патрубки должны устанавливаться на высоте 1,8-1,9 м от пола (до нижней кромки).

Расчет воздушных душей. При борьбе с тепловым облучением для систем воздушного душирования, работающих на наружном воздухе, принимаются расчетные параметры наружного воздуха категории Б, а в остальных случаях - расчетные параметры наружного воздуха категории А для теплого периода года и категории Б для холодного периода года.

Расчет душирующей установки (по методу д-ра техн. наук П. В. Участкина) сводится к определению площади сечения душирую- щего патрубка Fo из условия обеспечения нормируемых параметров воздуха на рабочем месте. Расчет проводится в следующем порядке.

Для создания на рабочих местах требуемых метеорологических условий применяют воздушное душирование.Устройство воздушных душей необходимо: при воздействии на работающего теплового облучения интенсивностью 350 Вт/м 2 и более, при нагреве воздуха в рабочей зоне выше установленной температуры, при невозможности использования местных укрытий источников выделения вредных газов и паров.

Применение воздушных душей целесообразно при тепловом облучении работающих у промышленных печей, расплавленного металла, нагретых слитков и заготовок. Интенсивность теплового облучения рабочего места, Вт/м 2 , 5,67 – коэффициент излучения абсолютно черного тела, Вт/(м 2 ·К 4); – коэффициент, учитывающий расстояние от источника излучения до рабочего места (рис. 11.9, а ); – коэффициент облучённости при излучении из отверстия (рис. 4.3);

– температура источника облучения, ºС.

Стационарный душ. Воздушные души след. Устраив.после принятия мер по уменьшению облучения применением защитных экранов или водяных завес.В горячих цехах необход. предусматривать теплоизоляцию воздуховодов, подающих воздух к душирующим патрубкам.

При расчёте систем воздушного душирования нар.возд. принимают расчётные параметры А – для теплого и Б – для холодного периодов года. Эти системы нельзя объединять с системами приточной вентиляции, они должны быть отдельными. Для обработки и подачи наружного воздуха на души используют приточные камеры или кондиционеры.

Направление воздушного потока может быть горизонтальное или сверху вниз под углом 45º. При борьбе с вредными газовыми выделениями воздушный поток душа направляют в лицо человека. Ширину площадки постоянного рабочего места в расчётах принимают равной 1 м, а минимальную площадь выходного сечения душирующего патрубка – 0,1 м 2 (или диаметр 0,3 м).

Воздушные души могут подавать: 1) наружный воздух, подвергающийся увлажнению, охлаждению или подогреванию и очистке от пыли; 2) наружный воздух после очистки от пыли; 3) внутренний воздух после его охлаждения и 4) внутренний воздух без обработки.

По конструкции воздушные души бывают стационарные (рис. 11.9, б ) и передвижные (рис. 11.9, в ).

Передвижные установки подают на рабочие места внутренний воздух помещения без его обработки. Иногда в создаваемый ими воздушный поток добавляют тонкораспыленную воду, что усиливает охлаждающий эффект за счёт испарения капелек воды.

Для охлаждения и увлажнения наружного воздуха, подаваемого на души, процесс его обработки в форсуночных камерах, т.к.процесс с применением искусственного холода требует значительных затрат.

В качестве передвижных душирующих установок получили применение веерный агрегат ВА-1 и агрегат ПАМ-24.

ВА-1 имеет чугунную станину 1, несущую на себе осевой вентилятор 3, обечайку 4 с сеткой 5, конфузор 6 с направляющими лопатками 7 и обтекателем 8, пневматическую форсунку 9 типа ФП-1 или ФП-2 и трубопроводы с гибкими шлангами 10 для подвода сжатого воздуха и воды.Вентилятор может поворачиваться вокруг оси на угол до 60º, подниматься на телескопе 11 по вертикали на 200-600 мм. Производительность агрегата 6 тыс. м 3 /ч. Веерные агрегаты ВА-2 и ВА-3 развивают большую производительность соответственно в два и три раза.

Интенсивность теплового облучения человека регламентируется, исходя из субъективного ощущения человеком энергии облучения. Согласно требованиям нормативных документов интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов не должна превышать :

− 35 Вт/м 2 при облучении более 50% поверхности тела;

− 70 Вт/м 2 при облучении от 25 до 50% поверхности тела;

− 100 Вт/м 2 при облучении не более 25% поверхности тела.

От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м 2 при облучении не более 25% поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Санитарные нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45°С, а для оборудования, внутри которого температура близка к 100°С, температура на его поверхности должна быть не выше 35°С .

В производственных условиях не всегда возможно выполнить нормативные требования. В этом случае должны быть предусмотрены мероприятия по защите рабочих от возможного перегрева :

дистанционное управление ходом технологического процесса;

− воздушное или водо-воздушное душирование рабочих мест;

− устройство специально оборудованных комнат, кабин или рабочих мест для кратковременного отдыха с подачей в них кондиционированного воздуха;

− использование защитных экранов, водяных и воздушных завес;

− применение средств индивидуальной защиты, спецодежды, спецобуви и др.

Одним из самых распространенных способов борьбы с тепловым излучением является экранирование излучающих поверхностей. Различают экраны трех типов :

1. Непрозрачные – к таким экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др. В непрозрачных экранах энергия электромагнитных колебаний взаимодействует с веществом экрана и превращается в тепловую энергию. Поглощая излучение, экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника.

2. Прозрачные – это экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы. В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран.


3. Полупрозрачные – к ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой. Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов.

По принципу действия экраны подразделяются на :

− теплоотражающие;

− теплопоглощающие;

− теплоотводящие.

Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др. .

Эффективность защиты от теплового излучения с помощью экранов оценивается по формуле :

где Q бз – интенсивность теплового излучения без применения защиты, Вт/м 2 , Q з – интенсивность теплового излучения с применением защиты, Вт/м 2 .

Кратность ослабления теплового потока, т, защитным экраном определяется по формуле:

где Q бз − интенсивность потока излучателя (без использования защитного экрана), Вт/м 2 , Q з − интенсивность потока теплового излучения экрана, Вт/м 2 .

Коэффициент пропускания экраном теплового потока, τ, равен:

τ = 1/m . (2.8)

Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ) .

Воздушный оазиссоздают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 – 0,4 м/с .

Воздушные завесысоздают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10 – 15 м/с) под некоторым углом навстречу холодному потоку .

Воздушные душиприменяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м 2) .

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае, у рабочего возникают неприятные ощущения (например, шум в ушах).

Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ) .

1700 Вт/м2. Температура воздуха в рабочей зоне =25 0С. Согласно табл. 4.23 средняя температура =19 0С, подвижность воздуха на рабочем месте

2,3 м/с. Расстояние от душирующего патрубка до рабочего Х=1,8 м.

При адиабатическом процессе охлаждения на выходе из форсуночной камеры температура воздуха 18,5 0С.

Принимаем душирующий патрубок ПДН-4

Размеры 630 мм h1=1540 мм l1=1260 мм

Расчётная площадь 0,23 м2

Коэффициент m=4,5 n=3,1 =3,2 =00-200

Определяем площадь теплового сечения патрубка:

Табличное значение =0,23 м2

Находим скорость воздуха на выходе из патрубка:

Устанавливаем расход воздуха подаваемого душирующим патрубком:

В холодный период года и в переходных условиях температура и скорость движения воздуха на рабочем месте должны быть в таких пределах:

18...19 0С =2,0...2,5 м/с =16 0С

Оставляем неизменными принятые для тёплого периода, определяем температуру воздуха на выходе из душирующего патрубка при =16 0С и =19 0С используя формулу:

Вентиляция кабин крановщиков

Система вентиляции кабин крановщиков с подачей наружного воздуха. Вентиляция должна обеспечивать подпор в наличии 10-15 Па.

Система вентиляции кабины с подачей наружного воздуха осуществляется по схеме, приведённой на рис. 1. Конструкция содержит коллектор, расположенный вдоль пути движения крана, заборное устройство, движущееся в щели коллектора и жёстко соединённое с кабиной крановщика. В качестве уплотняющего устройства щели коллектора применяют резиновую ленту или гидравлический затвор.

Рис. 1 - Вентиляция крановой кабины с подачей воздуха через коллектор: 1 - коллектор, 2 - вентилятор, 3 - крановая кабина, 4 - глушитель, 5 - уплотнительная резиновая трубка

Местная вытяжная вентиляция

Местные отсосы от оборудования выделяющего пары, газы, дурные запахи

Расчёт зонта - козырька над загрузочным отверстием нагревательной печи

Зонт - козырёк над загрузочным отверстием печи предназначен для улавливания потока газов, выходящих из отверстия под влиянием избыточного давления в печи. Размеры всасывающего отверстия зонта должны соответствовать размерам всасывающейся струи с учётом её искривления под действием гравитационных сил (рис. 2.)

Рис. 2

Определим объём удаляемого воздуха и размеры зонта - козырька у термической печи, имеющей загрузочное отверстие размером h?b=0,5?0,5 м. В печи поддерживается температура газов tг=1150 0С, температура воздуха в рабочей зоне =25 0С

1. Определим среднюю скорость, с которой газы выбиваются из отверстия печи, предварительно вычислив:

где - коэффициент расхода 0,65

Избыточное давление в печи, Па

h0 - половина высоты загрузочного отверстия, м

и - плотность соответственно воздуха рабочей зоны и газов выходящих из печи, кг/м3

2. Объём газов, выходящих из рабочего проёма печи, м3/с

где - площадь рабочего проёма печи, м2

2,78(0,5?0,5)=0,69 м3/с

0,690,25=0,17 кг/с

3. Вычисляем критерий Архимеда

где - эквивалентный по площади диаметр рабочего проёма, м

и - температура соответственно газов в печи и воздуха в рабочей зоне, К

Критерий Архимеда при м

4. Расстояние, на котором ось потока газов искривлённого под давлением гравитационных сил, достигает плоскости всасывающего отверстия зоны, м

где m, n - коэффициенты изменения скорости и температуры при отношениях высоты загрузочного отверстия h к его ширине и в пределах 0,5...1 применяются равными соответственно 5 и 4,2. Определим расстояние x при h0=0,25 m=5 n=4,2

5. Диаметр потока газов на расстоянии x при

0,565+0,440,653=0,852 м

6. Находим вылет и ширину зонта

Б=b+(150...200)=b+0,2=0,5+0,2=0,7 м

7. Определяем расход отсасываемой смеси газов и воздуха:

8. Расход воздуха подсасываемого из помещения:

0,727-0,69=0,037 м3/с

0,0371,18=0,044 кг/с

9. Температура смеси газов и смеси, 0С

Которая недопустимо высока и для естественной (< 300 0С) и для механической (< 80 0С). Принимаем =300 0C, когда расход подсасываемого воздуха м/с, увеличивается до значения:

Суммарный объём:

Определим высоту дымовой трубы для удаления найденной массы воздуха. Примем диаметр трубы dТР=500 мм

площадь поперечного сечения трубы:

0,7850,52=0,196 м2

Скорость воздуха в трубе м/с

Предварительно задаёмся высотой трубы hтр=6 м. На головке трубы устанавливаем дефлектор диаметром dдеф=500 мм, высота дефлектора hдеф=1,7dдеф=1,70,5=0,85 м

Коэффициент местного сопротивления дефлектора

Коэффициент местного сопротивления зонта

Потери давления в вытяжной трубе вместе с дефлектором с учётом загрязнения стенок определяем по формуле:

Уточним примерную высоту вытяжной трубы из равенства:

Температура наружного воздуха tн=21,2 0С, тогда:

Высота зонта:

Подставим наёденные значения в формулу:

5,73 м близко к предварительно применимому